Optical, nanostructural, and biophysical properties of Zn-induced changes in human erythrocyte membranes
Tóm tắt
We studied changes in the surface of erythrocyte membranes exposed to the action of zinc sulfate in the concentration range of 0.1–2.0 mM/l using methods of light scattering, spectrofluorimetry, and atomic force microscopy. Using the spectrofluorimetry method, we revealed a dose-dependent increase in the fluorescence intensity of a fluorescamine probe incorporated into erythrocyte membranes modified by zinc ions, which is indicative of an increase in the level of NH2 groups on the cell surface. Using atomic force microscopy, we revealed changes in the surface topography of erythrocyte membranes exposed to the action of zinc sulfate in the concentration range of 0.1–2.0 mM/l. By performing a correlation analysis, we revealed that the correlation length of the autocorrelation function of the erythrocyte surface irregularity profile directly related to the fluorescence intensity of fluorescamine incorporated into erythrocyte membranes (r = 0.9, p < 0.05) modified by zinc ions. We showed that, in the zinc sulfate concentration range of 0.1–2.0 mM/l, zinc oxides form in erythrocyte membranes, which is confirmed by the appearance of an absorption band at 330–340 nm and by an increase in the light scattering. At more considerable concentrations, we identified absorption bands characteristic of zinc protein complexes in erythrocyte membranes. A considerable decrease in the elongation of the scattering indicatrix of erythrocyte membranes caused by luminescence correlates with the content of zinc proteins. Polarization measurements confirm the enhancement of the aggregation of protein complexes observed by the atomic force microscopy method. The proposed complex approach can be used in studies on the action of various abiotic factors on biological cells.
Tài liệu tham khảo
M. Valko, H. Morris, and M. T. D. Cronin, Current Med. Chem. 12, 1161 (2005).
K. J. Waldron, J. C. Rutherford, D. Ford, and N. J. Robinson, Nature 460, 823 (2009).
E. I. Slobozhanina, N. M. Kozlova, L. M. Lukyanenko, O. B. Oleksiuk, R. Gabbianelli, D. Fedeli, and G. C. Caulini, J. Appl. Toxicol. 25, 109 (2005).
Yi. Cheng, Liu Maozi, Li Rong Zhang, et al., Biochem. Biophys. Acta 1424, 249 (1999).
E. I. Slobozhanina, N. M. Kozlova, V. M. Yasinskii, D. S. Filimonenko, and A. Ya. Khairullina, in Proceedings of the 7th International Seminar “Methodological Aspects of Scanning Probing Microscopy” (Minsk, Belarus, 2006), pp. 158–161.
A. Khairullina, T. Ol’shanskaya, V. Yasinskii, D. Filimonenko, E. Slobozhanina, and N. Kozlova, in Abstracts of the 9th International Conference on Laser Applications in Life Sciences (LALS-2007) (LALS-2010) (Moscow, Russia, 2007), p. 22.
A. Khairullina, T. Ol’shanskaya, V. Yasinskii, and D. Filimonenko, in Abstracts of the International Conference ICONO/LAT-2007 (Minsk, 2007), Vol. 1, p. 31.
A. Ya. Khairullina, T. V. Ol’shanskaya, D. S. Filimonenko, V. M. Yasinskii, E. I. Slobozhanina, and N. M. Kozlova, Opt. Spektrosk. 105(1), 168 (2008) [Opt. Spectrosc. 105 (1), 154 (2008)].
M. Girasole, A. Cricenti, and R. Generosi, Microsc. Res. Tech. 70, 912 (2007).
A. Ianoul, M. Street, D. Grant, J. Pezacki, R. S. Taylor, and L. Johnston, Biophys. J. 87, 3525 (2004).
C. E. Outten and A. O’Halloran, Science 292, 2488 (2001).
V. Kalfakakou and T. J. Simons, J. Physiol. 421, 485 (1990).
T. J. Simons, J. Membr. Biol. 123(1), 63 (1991).
Y. P. Tu and F. Y. Yang, J. Biochem. 118(1), 161 (1995).
M. Suwalskya, V. Novoa, F. Villenab, C. P. Sotomayore, L. F. Aguilarc, A. Ronowskad, and A. Szutowiczd, J. Inorg. Biochem. 103, 797 (2009).
T. Yeung, G. E. Gilbert, J. Shi, J. Silvius, A. Kapus, and S. Grinstein, Science 319(5860), 210 (2008).
G. L. Nicolson, J. Cell Biol. 57, 373 (1973).
N. M. Goldenberg and B. E. Steinberg, Cancer Res. 70, 1277 (2010).
G. P. Petrova and Yu. M. Petrusevich, Biomed. Radioelektron., No. 3, 41 (2000).
M. A. K. Markwell, S. M. Haas, and N. E. Tolbert, Anal. Biochem. 87(2), 206 (1978).
S. P. Hawkes, T. D. Meehan, and M. J. Bissell, Biochem. Biophys. Res. Commun. 68(4), 1226 (1976).
A. Ya. Khairullina, T. V. Ol’shanskaya, et al., Zh. Prikl. Spektrosk. 77(5), 760 (2010).
M. Weissbluth, Physics of Hemoglobin in Structure and Bonding (Springer-Verlag, New York, 1967), Vol. 2, pp. 1–125.
N. V. Tarasenko, V. S. Burakov, M. I. Nedelko, E. I. Mosunov, and A. A. Nevar, in Abstracts of the 17th International Symposium “Nanostructures: Physics and Technology” (Minsk, Belarus, 2009), pp. 342–343.
A. Ya. Khairullina, T. V. Ol’shanskaya, L. M. Bui, V. A. Babenko, D. A. Yavsin, V. M. Kozhevin, and S. A. Gurevich, Opt. Spektrosk. 101(6), 1028 (2006) [Opt. Spectrosc. 101 (6), 967 (2006)].
G. Gumus, O. M. Ozkendir, H. Kavak, and Y. Ufuktere, J. Optoelectron. Adv. Mater. 8, 299 (2006).
R. Barber, J. Opt. Soc. Am., No. 6, 545 (1957).