Optical investigation of highly strained InGaAs-GaAs multiple quantum wells

Journal of Applied Physics - Tập 62 Số 8 - Trang 3366-3373 - 1987
G. Ji1, Daming Huang1, U. K. Reddy1, T. Henderson1, R. Houdré1, H. Morkoç̌1
1University of Illinois at Urbana-Champaign, Coordinated Science Laboratory, 1101 W. Springfield Ave., Urbana, Illinois 61801

Tóm tắt

Low-temperature optical transmission spectra of several InxGa1−xAs/GaAs strained multiple quantum wells (MQWs) with different well widths and In mole fractions have been measured. The excitonic transitions up to 3C-3H are observed. The notation nc-mH(L) is used to indicate the transitions related to the nth conduction and mth valence heavy (light) hole subbands. Steplike structures corresponding to band-to-band transitions are also observed, which are identified as 1C-1L transitions. The calculated transition energies, taking into account both the strain and the quantum well effects, are in good agreement with the measured values. In these calculations the lattice mismatch between the GaAs buffer and the InGaAs/GaAs MQW is taken into account and the valence-band offset Qv is chosen as an adjustable parameter. By fitting the experimental results to our calculations, we conclude that the light holes are in GaAs barrier region (type II MQW) and the valence-band offset Qv is determined to be 0.30. A possible system in which the transition from type I to type II for light holes might be observed is also discussed.

Từ khóa


Tài liệu tham khảo

1982, J. Vac. Sci. Technol., 21, 469, 10.1116/1.571681

1982, J. Phys. (Paris) Colloq., 43, C5, 10.1051/jphyslet:019820043010500

1963, J. Appl. Phys., 34, 117, 10.1063/1.1729050

1976, J. Cryst. Growth, 32, 265, 10.1016/0022-0248(76)90041-5

1982, J. Appl. Phys., 53, 1586, 10.1063/1.330615

1984, J. Appl. Phys., 55, 2904, 10.1063/1.333331

1985, J. Appl. Phys., 60, 2361

1976, J. Cryst. Growth, 32, 265, 10.1016/0022-0248(76)90041-5

1974, J. Cryst. Growth, 27, 118

1985, J. Vac. Sci. Technol. B, 3, 709

1985, Appl. Phys. Lett., 47, 169, 10.1063/1.96251

1985, Phys. Rev. Lett., 32, 8027

1981, Phys. Rev. B, 24, 5693, 10.1103/PhysRevB.24.5693

1982, Phys. Rev. B, 25, 7584, 10.1103/PhysRevB.25.7584

1968, Phys. Rev., 172, 816, 10.1103/PhysRev.172.816

1982, J. Appl. Phys., 53, 8775, 10.1063/1.330480

1979, J. Electron Mater., 8, 663, 10.1007/BF02657085

1983, J. Appl. Phys., 54, 4543, 10.1063/1.332655

1985, J. Appl. Phys., 58, R1, 10.1063/1.336070

1982, J. Appl. Phys., 53, 8775, 10.1063/1.330480

1986, Appl. Phys. Lett., 49, 794, 10.1063/1.97549

1985, Phys. Rev. B, 31, 8298, 10.1103/PhysRevB.31.8298

1957, Phys. Rev., 108, 1384, 10.1103/PhysRev.108.1384

1975, Phys. Rev. Lett., 34, 1327, 10.1103/PhysRevLett.34.1327

1986, Phys. Rev. B, 33, 7259, 10.1103/PhysRevB.33.7259

1985, Superlattice and Microstructures, 1, 231, 10.1016/0749-6036(85)90009-6

1985, Phys. Rev. B, 32, 8395, 10.1103/PhysRevB.32.8395

1984, Appl. Phys. Lett., 45, 1237, 10.1063/1.95076

1984, Phys. Rev. B, 29, 7085, 10.1103/PhysRevB.29.7085

1980, J. Appl. Phys., 51, 2261, 10.1063/1.327853