Optical and surface morphological studies on CuPcOC8 thin films prepared by physical vapour deposition

Walter de Gruyter GmbH - Tập 31 - Trang 391-396 - 2013
Vinu. T. Vadakel1, C. S. Menon1
1School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills P.O, Kottayam, India

Tóm tắt

2,3,9,10,16,17,23,24-copper octakis (octyloxy) phthalocyanine (CuPcOC8) thin films deposited at room temperature have exhibited a change in their surface morphology with the post deposition annealing temperature under normal atmosphere.These films have been characterised by optical absorption also. SEM images have shown densely packed nano particles and nano-rod like structures on the substrates annealed at different temperatures. The optical transition was found to be direct allowed and the direct energy gap changed with the annealing temperature. The results of optical and surface morphological studies on CuPcOC8 have been discussed.

Tài liệu tham khảo

Friend R.H. et al., Nature 397 (1999), 121. Dimitrakopoulos C., Malenfant P.R., Adv. Mater. 14 (2002), 99. Hanack M., Lang M., Adv. Mater. 6 (1994), 819. M. Hanack, M. Lang, Chemtracts Org. Chem., 8 (1995), 131. M. Hanack, L.R Subramanian In H.S Nalwa (ED), Handbook of Organic Conductive Molecules and Polymers, Charge Transfer Salts, Fullerenes and Photoconductors, chapter 13, vol 1, John Wiley & Sons Ltd. 1997. M. Pope, C. E Swenberg, Electronic Processes in Organic Crystals, Clarendon Press, Oxford, 1992. Young F., Shtein M., Forrest S. R., Nat. Mater., 4 (2005), 37. Zhou Y., Taima T., Miyadera T., Yamanari T., Yoshida Y., J. Appl. Phys., 111 (2012), 103117. Suzuki A., Ohtsuki T., Oku T., Akiyama T., Material Science and Engineering B, 177 (2012), 877. Ghani I., Bochukov F., Fostiropoulos K., Reigler H., Thin Solid Films, 525 (2012), 177. Panda M.K., Ladomenu K., Coutosolelos A.G., Coordination Chemistry Reviews, 256 (2012), 2601. Prince B.J., Williamson B.E, Reeves R.J., J. Lumin., 93 (2001), 293. Ribeiro A.O., Biazzoto J.C., Sera O.A., J. Non-Cryst. Solids, 273 (2000), 198. Kowalsky W. et al., Phys. Chem. Chem. Phys., 1 (1999), 1719. Karan S., Mallik B., Nanotechnology, 19 (2008), 495202. Karan S., Mallik B., Phys. Chem. Chem. Phys., 10 (2010), 6751. Karan S., Basak D., Mallik B., Curr. Appl. Phys., 10 (2010), 1117. Ostrick J. R. et al., J. Appl. Phys., 81 (1997), 6804. Michaelis W., Wohrle D., Schelttwsin D., J. Mater. Res., 19, (2004), 2040. Peisert H. et. al., Chem. Phys. Lett., (2005), 403. Peiserth H. et al., J. Chem. Phys., 122 (2005), 064710. Kudo K., Shimada K., Marugami K., Iizuka M., Synth. Met. 102 (1999), 900. Van Slyke S.A., Chen C.H., Tang C.W., Appl. Phys. Lett. 69 (1996), 2160. Auerhammer J.M., Knupfer M., Peisert J., Fink H., Surf. Sci., 506 (2002), 333. Fietzek Ch., Mack H.-G., J. Mol. Model, 13 (2007), 11. Wang X., Zhang Y., Sun X., Inorg. Chem., 46, (2007), 7136. Wang X, Chen Y, Lin H, Jiang. J. Thin Solid Films, 496 (2006), 619. Shaposhmkov G.P., Maizlish V.E., Kulinich V.P., Russian Journal of General Chemistry, 77 (2007), 48. He Ch., Chen Y., Nie Y., Wang D., Optics Communications, 271 (2007), 253. Yu-Hong Liu et al., Surf. Sci., 559 (2004), 46. Zlatkin A., Yudin S., Simon J., Hanack M., Lehman H., Advanced Materials for Optics and Electronics, 5 (1995), 259. Camur M., Bulut M., Dyes and Pigments, 77 (2008), 165. Wang M., Yang Y.-L., Deng K., Wang Ch., Chem. Phys. Lett., 439 (2007), 76. Sharp J.H., Abkowitz M., J. Phys. Chem., 77 (1973), 477. Ough E.A., Stillman J.M., Creber K.A.M, Can. J. Chem., 71 (2001), 1898. Mack J., Stillman M.J., Inorg. Chem., 40 (2001), 812. Misra T.N., Rev. Pure. Appl. Chem., 15 (1965), 39. Jungyoon J., Kim S., Lim E., Lee K., Cha D., Friedman B., Appl. Surf. Sci. 205 (2003), 274. Joseph B., Menon C.S., E-J. Chem., 5 (2008), 86. Pankove J.T., Optical Processes in Semiconductors, Prentice Hall, Inc. Englewood Cliffs, New Jersey, USA, (1970), 36. Karan S., Mallik B., Solid State Communications, 143, (2007), 289.