Optical Constants and Inelastic Electron-Scattering Data for 17 Elemental Metals

Journal of Physical and Chemical Reference Data - Tập 38 Số 4 - Trang 1013-1092 - 2009
Wolfgang Werner1, Kathrin Glantschnig2,3, Claudia Draxl4
1Vienna University of Technology Institut für Allgemeine Physik, , Wiedner Hauptstraße 8–10, A 1040 Vienna, Austria
2University of Graz Chair of Atomistic Modelling and Design of Materials, , Franz-Josefstraße 18, A 8700 Austria and Institut für Physik, Fachbereich Theoretische Physik, , Universitätsplatz 5, A 8010 Graz, Austria
3University of Leoben Chair of Atomistic Modelling and Design of Materials, , Franz-Josefstraße 18, A 8700 Austria and Institut für Physik, Fachbereich Theoretische Physik, , Universitätsplatz 5, A 8010 Graz, Austria
4University of Leoben Chair of Atomistic Modelling and Design of Materials, , Franz-Josefstraße 18, A 8700 Austria

Tóm tắt

Two new sets of optical data, i.e., values for the real (ε1) and imaginary (ε2) parts of the complex dielectric constant as well as the energy loss function (ELF) (Im{−1∕ε}), are presented for 16 elemental metals (Ti, V, Fe, Co, Ni, Cu, Zn, Mo, Pd, Ag, Ta, W, Pt, Au, Pb, and Bi) and 1 semimetal (Te) and are compared to available data in the literature. One data set is obtained from density functional theory (DFT) calculations and gives ε from the infrared to the soft x-ray range of wavelengths. The other set of optical constants, derived from experimental reflection electron energy-loss spectroscopy (REELS) spectra, provides reliable optical data from the near-ultraviolet to the soft x-ray regime. The two data sets exhibit very good mutual consistency and also, overall, compare well with optical data found in the literature, most of which were determined several decades ago. However, exceptions to this rule are also found in some instances, some of them systematic, where the DFT and REELS mutually agree significantly better than with literature data. The accuracy of the experimental data is estimated to be better than 10% for the ELF and ε2 as well as for ε1 for energies above 10eV. For energies below 10eV, the uncertainty in ε1 in the experimental data may exceed 100%, which is a consequence of the fact that energy-loss measurements mainly sample the absorptive part of the dielectric constant. Electron inelastic-scattering data, i.e., the differential inverse inelastic mean free path (IMFP) as well the differential and total surface excitation probabilities are derived from the experimental data. Furthermore, the total electron IMFP is calculated from the determined optical constants by employing linear response theory for energies between 200 and 3000eV. In the latter case, the consistency between the DFT and the REELS data is excellent (better than 5% for all considered elements over the entire energy range considered) and a very good agreement with earlier results is also obtained, except for a few cases for which the earlier optical data deviate significantly from those obtained here.

Từ khóa


Tài liệu tham khảo

1985, Handbook of Optical Constants of Solids I

1991, Handbook of Optical Constants of Solids II

1993, At. Data Nucl. Data Tables, 54, 181, 10.1006/adnd.1993.1013

1995, J. Phys. Chem. Ref. Data, 24, 71, 10.1063/1.555974

2000, J. Phys. Chem. Ref. Data, 29, 597, 10.1063/1.1321055

1985, Electron Energy Loss Spectroscopy in the Electron Microscope

2005, J. Electron Spectrosc. Relat. Phenom., 143, 65, 10.1016/j.elspec.2004.03.011

1985, Handbook of Optical Constants of Solids I

1991, Handbook of Optical Constants of Solids II

2006, Phys. Rev. B, 74, 075421, 10.1103/PhysRevB.74.075421

2006, Surf. Sci., 600, L250, 10.1016/j.susc.2006.07.013

2004, J. Phys. Chem. Ref. Data, 33, 409, 10.1063/1.1595653

1984, Electrodynamics of Continuous Media, 2nd ed.

1957, Phys. Rev., 106, 874, 10.1103/PhysRev.106.874

1898, Ann. Phys., 302, 49, 10.1002/andp.18983020904

1899, Proc. R. Soc. London, 64, 377, 10.1098/rspl.1898.0117

2000, Rev. Mod. Phys., 72, 621, 10.1103/RevModPhys.72.621

2002, Rev. Mod. Phys., 74, 601, 10.1103/RevModPhys.74.601

2006, Comput. Phys. Commun., 175, 1, 10.1016/j.cpc.2006.03.005

2009, Phys. Rev. B, 79, 041101, 10.1103/PhysRevB.79.041102

1999, Rev. Mod. Phys., 71, 1253, 10.1103/RevModPhys.71.1253

2001

1975, Phys. Rev. B, 12, 3060, 10.1103/PhysRevB.12.3060

1994, Planewaves, Pseudopotentials and the LAPW Method

2004, Phys. Scr., T, T109, 48, 10.1238/Physica.Topical.109a00048

1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

1980, J. Phys. C, 13, 2675, 10.1088/0022-3719/13/14/009

1994, Phys. Rev. B, 49, 16223, 10.1103/PhysRevB.49.16223

1972, Phys. Rev. B, 6, 4370, 10.1103/PhysRevB.6.4370

2009, Surf. Interface Anal., 41, 357, 10.1002/sia.3006

2006, Phys. Rev. B, 74, 205407, 10.1103/PhysRevB.74.205407

1993, Comput. Phys. Commun., 74, 358, 10.1016/0010-4655(93)90019-9

2001, Surf. Interface Anal., 31, 141, 10.1002/sia.973

1994, Phys. Rev. B, 49, 16684, 10.1103/PhysRevB.49.16684

2004, J. Electron Spectrosc. Relat. Phenom., 137, 183, 10.1016/j.elspec.2004.02.107

2005, Phys. Rev. B, 71, 115415, 10.1103/PhysRevB.71.115415

2003, Surf. Sci., 526, L159, 10.1016/S0039-6028(02)02684-5

2003, Phys. Rev. B, 67, 155412, 10.1103/PhysRevB.67.155412

2003, Surf. Interface Anal., 35, 347, 10.1002/sia.1540

2002, Surf. Sci., 518, L569, 10.1016/S0039-6028(02)02098-8

1997, Phys. Rev. B, 55, 14925, 10.1103/PhysRevB.55.14925

2005, Surf. Sci., 588, 26, 10.1016/j.susc.2005.05.023

1986, Numerical Recipes

1994, Surf. Interface Anal., 21, 165, 10.1002/sia.740210302

2001, Surf. Sci., 486, L461, 10.1016/S0039-6028(01)01091-3

2007, Surf. Sci., 601, 2125, 10.1016/j.susc.2007.03.001

Surf. Sci.

1993, Phys. Rev. B, 48, 4373, 10.1103/PhysRevB.48.4373

1994, Surf. Interface Anal., 22, 79, 10.1002/sia.740220120

1999, J. Phys. Chem. Ref. Data, 28, 19, 10.1063/1.556035

R. Oswald, Ph.D. thesis, Eberhard-Karls-Universitäat Tübingen, 1992.

R. Schmid, Ph.D. thesis, University of Tübingen, 1982.

2001, J. Electron Spectrosc. Relat. Phenom., 113, 127, 10.1016/S0368-2048(00)00280-2

2000, Prog. Surf. Sci., 63, 135, 10.1016/S0079-6816(99)00018-0

2003, Phys. Rev. A, 68, 012708, 10.1103/PhysRevA.68.012708

1992, Phys. Rev. B, 46, 2486, 10.1103/PhysRevB.46.2486

1996, Phys. Rev. B, 53, 9719, 10.1103/PhysRevB.53.9719

2006, Phys. Rev. B, 73, 035402, 10.1103/PhysRevB.73.035402

2007, Surf. Sci., 601, L109, 10.1016/j.susc.2007.06.076

2001, X-ray Data Booklet

2008, Surf. Sci., 602, 2069, 10.1016/j.susc.2008.04.011

M. Novak, Ph.D. thesis, University of Debrecen, 2008.

2007, Slow Heavy Particle Induced Electron Emission from Solid Surfaces

1987, Phys. Rev. B, 35, 482, 10.1103/PhysRevB.35.482

C. J. Tung, R. H. Ritchie, J. C. Ashley, and V. E. Anderson, Oak Ridge National Laboratory No. Report No. 5188, 1976.

1988, Surf. Interface Anal., 11, 577, 10.1002/sia.740111107

2005, Surf. Interface Anal., 37, 895, 10.1002/sia.2107

1985, Scanning Electron Microscopy

2005, Surf. Interface Anal., 38, 76, 10.1002/sia.2202

2005, Surf. Interface Anal., 37, 978, 10.1002/sia.2092

1995, Phys. Rev. B, 52, 2964, 10.1103/PhysRevB.52.2964

2001, Surf. Sci., 470, 325, 10.1016/S0039-6028(00)00877-3

1997, Surf. Interface Anal., 25, 137, 10.1002/(SICI)1096-9918(199703)25:3<137::AID-SIA230>3.0.CO;2-L

1985, Handbook of Optical Constants of Solids

1990, J. Vac. Sci. Technol., 8, 735, 10.1116/1.576956

2006, Appl. Phys. Lett., 89, 252116, 10.1063/1.2422903

1991, Surf. Interface Anal., 17, 927, 10.1002/sia.740171305

2000, Surf. Sci., 470, L123, 10.1016/S0039-6028(00)00858-X

2002, Surf. Sci., 519, 115, 10.1016/S0039-6028(02)02206-9