Operator-Lipschitz functions in Schatten–von Neumann classes

Acta Mathematica - Tập 207 - Trang 375-389 - 2012
Denis Potapov1, Fedor Sukochev1
1School of Mathematics & Statistics, University of New South Wales, Kensington, Australia

Tóm tắt

This paper resolves a number of problems in the perturbation theory of linear operators, linked with the 45-year-old conjecure of M. G. Kreĭn. In particular, we prove that every Lipschitz function is operator-Lipschitz in the Schatten–von Neumann ideals S α , 1 < α < ∞. Alternatively, for every 1 < α < ∞, there is a constant c α > 0 such that $$ {\left\| {f(a) - f(b)} \right\|_{\alpha }} \leqslant {c_{\alpha }}{\left\| f \right\|_{{{\text{Lip}}\,{1}}}}{\left\| {a - b} \right\|_{\alpha }}, $$ where f is a Lipschitz function with $$ {\left\| f \right\|_{{{\text{Lip}}\,{1}}}}: = \mathop{{\sup }}\limits_{{_{{\lambda \ne \mu }}^{{\lambda, \mu \in \mathbb{R}}}}} \left| {\frac{{f\left( \lambda \right) - f\left( \mu \right)}}{{\lambda - \mu }}} \right| < \infty, $$ $$ {\left\| \cdot \right\|_{\alpha }} $$ is the norm is S α , and a and b are self-adjoint linear operators such that $$ a - b \in {S^{\alpha }} $$ .

Tài liệu tham khảo

Bourgain, J., Vector-valued singular integrals and the H1-BMO duality, in Probability Theory and Harmonic Analysis (Cleveland, OH, 1983), Monogr. Textbooks Pure Appl. Math., 98, pp. 1–19. Dekker, New York, 1986. Davies, E.B., Lipschitz continuity of functions of operators in the Schatten classes. J. Lond. Math. Soc., 37 (1988), 148–157. Dodds, P. G., Dodds, T. K., de Pagter, B. & Sukochev, F. A., Lipschitz continuity of the absolute value and Riesz projections in symmetric operator spaces. J. Funct. Anal., 148 (1997), 28–69. Farforovskaya, Yu. B., Estimates of the closeness of spectral decompositions of selfadjoint operators in the Kantorovich–Rubinshte˘ın metric. Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 22 (1967), 155–156 (Russian). Farforovskaya, Yu. B., The connection of the Kantorovich–Rubinshte˘ın metric for spectral resolutions of selfadjoint operators with functions of operators. Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 23 (1968), 94–97 (Russian). Farforovskaya, Yu. B., An example of a Lipschitzian function of selfadjoint operators that yields a nonnuclear increase under a nuclear perturbation. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 30 (1972), 146–153 (Russian). Farforovskaya, Yu. B., On the estimation of the difference f(B)−f(A) in the classes Sp. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 39 (1974), 194–195 (Russian). Kato, T., Continuity of the map S7!|S| for linear operators. Proc. Japan Acad., 49 (1973), 157–160. Kosaki, H., Unitarily invariant norms under which the map A!|A| is Lipschitz continuous. Publ. Res. Inst. Math. Sci., 28 (1992), 299–313. Kreĭn, M. G., Some new studies in the theory of perturbations of self-adjoint operators, in First Math. Summer School, Part I, pp. 103–187 (Russian). Izdat. “Naukova Dumka”, Kiev, 1964. Nazarov, F. & Peller, V., Lipschitz functions of perturbed operators. C. R. Math. Acad. Sci. Paris, 347 (2009), 857–862. de Pagter, B., Witvliet, H. & Sukochev, F. A., Double operator integrals. J. Funct. Anal., 192 (2002), 52–111. Peller, V. V., Hankel operators in the theory of perturbations of unitary and selfadjoint operators. Funktsional. Anal. i Prilozhen., 19 (1985), 37–51, 96 (Russian). English translation in Functional Anal. Appl., 19 (1985), 111–123. Peller, V. V., For which f does A−B2Sp imply that f(A)−f(B)2Sp?, in Operators in Indefinite Metric Spaces, Scattering Theory and other Topics (Bucharest, 1985), Oper. Theory Adv. Appl., 24, pp. 289–294. Birkh¨auser, Basel, 1987. Pisier, G. & Xu, Q., Non-commutative Lp-spaces, in Handbook of the Geometry of Banach Spaces, Vol. 2, pp. 1459–1517. North-Holland, Amsterdam, 2003. Potapov, D. & Sukochev, F., Lipschitz and commutator estimates in symmetric operator spaces. J. Operator Theory, 59 (2008), 211–234. Potapov, D. & Sukochev, F., Unbounded Fredholm modules and double operator integrals. J. Reine Angew. Math., 626 (2009), 159–185. de la Salle, M., A shorter proof of a result by Potapov and Sukochev on Lipschitz functions on Sp. Preprint, 2009. arXiv:0905.1055 [math.FA]. Widom, H., When are differentiable functions differentiable?, in Linear and Complex Analysis Problem Book, Lecture Notes in Mathematics, 1043, pp. 184–188. Springer, Berlin– Heidelberg, 1984.