Operator-Like Wavelet Bases of $L_{2}(\mathbb{R}^{d})$

Springer Science and Business Media LLC - Tập 19 - Trang 1294-1322 - 2013
Ildar Khalidov1, Michael Unser1, John Paul Ward1
1Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Tóm tắt

The connection between derivative operators and wavelets is well known. Here we generalize the concept by constructing multiresolution approximations and wavelet basis functions that act like Fourier multiplier operators. This construction follows from a stochastic model: signals are tempered distributions such that the application of a whitening (differential) operator results in a realization of a sparse white noise. Using wavelets constructed from these operators, the sparsity of the white noise can be inherited by the wavelet coefficients. In this paper, we specify such wavelets in full generality and determine their properties in terms of the underlying operator.

Tài liệu tham khảo

Aldroubi, A.: Portraits of frames. Proc. Am. Math. Soc. 123(6), 1661–1668 (1995) Aldroubi, A., Unser, M.: Sampling procedures in function spaces and asymptotic equivalence with Shannon’s sampling theory. Numer. Funct. Anal. Optim. 15(1–2), 1–21 (1994) Baxter, B.J.C.: The interpolation theory of radial basis functions. PhD thesis, University of Cambridge (1992) Chui, C.K., Stöckler, J., Ward, J.D.: Analytic wavelets generated by radial functions. Adv. Comput. Math. 5(1), 95–123 (1996) Chui, C.K., Wang, J.: A cardinal spline approach to wavelets. Proc. Am. Math. Soc. 113(3), 785–793 (1991) Chui, C.K., Ward, J.D., Jetter, K.: Cardinal interpolation with differences of tempered functions. Comput. Math. Appl. 24(12), 35–48 (1992) Chui, C.K., Ward, J.D., Jetter, K., Stöckler, J.: Wavelets for analyzing scattered data: an unbounded operator approach. Appl. Comput. Harmon. Anal. 3(3), 254–267 (1996) de Boor, C., DeVore, R.A., Ron, A.: On the construction of multivariate (pre)wavelets. Constr. Approx. 9(2–3), 123–166 (1993) de Boor, C., DeVore, R.A., Ron, A.: Approximation from shift-invariant subspaces of \({L}_{2}(\mathbb{R}^{d})\). Trans. Am. Math. Soc. 341(2), 787–806 (1994) de Boor, C., Höllig, K., Riemenschneider, S.: Convergence of cardinal series. Proc. Am. Math. Soc. 98(3), 457–460 (1986) Duffy, D.G.: Green’s Functions with Applications. Studies in Advanced Mathematics. Chapman and Hall/CRC, Boca Raton (2001) Grafakos, L.: Classical Fourier Analysis, 2nd edn. Graduate Texts in Mathematics, vol. 249. Springer, Berlin (2008) Kalker, T.: On multidimensional sampling. In: Madisetti, V.K., Williams, D.B. (eds.) Digital Signal Processing Handbook. CRC Press, New York (1999) Khalidov, I., Fadili, J., Lazeyras, F., Van De Ville, D., Unser, M.: Activelets: wavelets for sparse representation of hemodynamic responses. Signal Process. 91(12), 2810–2821 (2011) Khalidov, I., Unser, M.: From differential equations to the construction of new wavelet-like bases. IEEE Trans. Signal Process. 54(4), 1256–1267 (2006) Mallat, S.G.: Multiresolution approximations and wavelet orthonormal bases of L 2(R). Trans. Am. Math. Soc. 315(1), 69–87 (1989) Mallat, S.G.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Elsevier/Academic Press, Amsterdam (2009) Meyer, Y.: Wavelets and Operators. Cambridge Studies in Advanced Mathematics, vol. 37. Cambridge University Press, Cambridge (1992). Translated from the 1990 French original by D.H. Salinger Micchelli, C.A., Rabut, C., Utreras, F.I.: Using the refinement equation for the construction of pre-wavelets III: Elliptic splines. Numer. Algorithms 1(3), 331–351 (1991) Ron, A., Shen, Z.: Frames and stable bases for shift-invariant subspaces of L 2(R d). Can. J. Math. 47(5), 1051–1094 (1995) Stöckler, J.: Non-stationary wavelets. In: Jetter, K., Utreras, F. (eds.) Multivariate Approximation: From CAGD to Wavelets, pp. 307–320. World Scientific, Singapore (1993) Unser, M., Tafti, P.D.: Stochastic models for sparse and piecewise-smooth signals. IEEE Trans. Signal Process. 59(3), 989–1006 (2011) Unser, M., Tafti, P.D., Sun, Q.: A unified formulation of Gaussian vs. sparse stochastic processes–Part I: Continuous-domain theory. arXiv:1108.6150v2 Vaidyanathan, P.P.: Fundamentals of multidimensional multirate digital signal processing. Sadhana 15(3), 157–176 (1990) Van De Ville, D., Blu, T., Unser, M.: Isotropic polyharmonic B-splines: scaling functions and wavelets. IEEE Trans. Image Process. 14(11), 1798–1813 (2005) Van De Ville, D., Forster-Heinlein, B., Unser, M., Blu, T.: Analytical footprints: compact representation of elementary singularities in wavelet bases. IEEE Trans. Signal Process. 58(12), 6105–6118 (2010) Van De Ville, D., Unser, M.: Complex wavelet bases, steerability, and the Marr-like pyramid. IEEE Trans. Image Process. 17(11), 2063–2080 (2008) Verhaeghe, J., Van De Ville, D., Khalidov, I., D’Asseler, Y., Lemahieu, I., Unser, M.: Dynamic PET reconstruction using wavelet regularization with adapted basis functions. IEEE Trans. Med. Imaging 27(7), 943–959 (2008)