One‐to‐One Comparison of Graphite‐Blended Negative Electrodes Using Silicon Nanolayer‐Embedded Graphite versus Commercial Benchmarking Materials for High‐Energy Lithium‐Ion Batteries

Advanced Energy Materials - Tập 7 Số 15 - 2017
Sujong Chae1, Namhyung Kim1, Jiyoung Ma1, Jaephil Cho1, Minseong Ko1
1Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil, Eonyang-eup Ulju-gun Ulsan 689-798 South Korea

Tóm tắt

While existing carbonaceous anodes for lithium–ion batteries (LIBs) are approaching a practical capacitive limit, Si has been extensively examined as a potential alternative because it shows exceptional gravimetric capacity (3579 mA h g−1) and abundance. However, the actual implementation of Si anodes is impeded by difficulties in electrode calendering processes and requirements for excessive binding and conductive agents, arising from the brittleness, large volume expansion (>300%), and low electrical conductivity (1.56 × 10−3 S m−1) of Si. In one rational approach to using Si in high‐energy LIBs, mixing Si‐based materials with graphite has attracted attention as a feasible alternative for next‐generation anodes. In this study, graphite‐blended electrodes with Si nanolayer‐embedded graphite/carbon (G/SGC) are demonstrated and detailed one‐to‐one comparisons of these electrodes with industrially developed benchmarking samples are performed under the industrial electrode density (>1.6 g cc−1), areal capacity (>3 mA h cm−2), and a small amount of binder (3 wt%) in a slurry. Because of the favorable compatibility between SGC and conventional graphite, and the well‐established structural features of SGC, great potential is envisioned. Since this feasible study utilizes realistic test methods and criteria, the rigorous benchmarking comparison presents a comprehensive understanding for developing and characterizing Si‐based anodes for practicable high‐energy LIBs.

Từ khóa


Tài liệu tham khảo

10.1039/c0ee00831a

10.1557/mrs.2015.259

10.1002/anie.201201429

10.1039/c2ee21892e

10.1021/ar2002705

10.1557/mrs.2011.136

10.1149/2.066405jes

10.1038/srep27449

10.1016/j.jpowsour.2007.06.026

10.1149/2.0271606jes

10.1002/adma.201301795

10.1002/smll.201500474

10.1016/j.nantod.2012.08.004

10.1149/2.0941410jes

10.1021/cr500207g

10.1016/j.nanoen.2012.08.009

10.1039/c2ra01183b

10.1016/j.electacta.2014.08.104

10.1016/j.surfcoat.2011.07.076

10.1016/j.jpowsour.2007.09.119

10.1016/j.jpowsour.2010.03.008

10.1149/1.2218163

10.1016/S1388-2481(03)00009-2

10.5012/bkcs.2013.34.5.1435

10.1038/nenergy.2016.113

10.1039/C6EE00023A

Atiemo‐Obeng V. A., 2004, Handbook of Industrial Mixing, 543

10.1007/978-1-4471-6548-4

10.1039/b923926j

10.1016/S0378-7753(02)00533-5

10.1002/aenm.201601481

10.1038/nnano.2012.35

10.1002/celc.201500254

10.1002/aenm.201200857

10.1039/c2ee22292b

10.1016/j.jpowsour.2005.05.052

10.1016/j.jpowsour.2010.07.020

10.1039/b919877f

10.1149/1.2013210

10.1021/jp404155y

10.1039/c3ta00045a