Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tổng hợp một bước các nanoconjugate ZnS lượng tử hòa tan trong nước biocompatible/chitosan
Tóm tắt
Chấm lượng tử (QDs) là những tinh thể nano bán dẫn phát quang với tiềm năng lớn trong các ứng dụng y sinh và môi trường. Tuy nhiên, việc loại bỏ khả năng gây độc tế bào tiềm ẩn của QDs được làm từ kim loại nặng vẫn là thách thức đối với cộng đồng nghiên cứu. Do đó, mục tiêu của công trình này là phát triển một phương pháp đơn giản mới để tổng hợp QDs thân thiện với sinh học bằng cách sử dụng các ligand carbohydrate trong hóa học keo nước với các thuộc tính quang học được điều chỉnh bởi pH. Việc tổng hợp QDs ZnS được bao bọc bằng chitosan được thực hiện thông qua quy trình keo nước một bước ở nhiệt độ phòng. Các nanobioconjugate đã được đặc trưng hóa một cách sâu rộng bằng nhiều kỹ thuật khác nhau, và kết quả cho thấy kích thước trung bình của các tinh thể nano ZnS và các đặc tính phát quang của chúng bị ảnh hưởng bởi pH trong quá trình tổng hợp. Vì vậy, các hệ thống biofunctionalized 'không chứa cadmium' mới dựa trên QDs ZnS được bao bọc bằng chitosan đã được phát triển thành công, thể hiện hoạt động phát quang có thể được sử dụng trong một số ứng dụng có thể, chẳng hạn như các đầu dò trong sinh học, y học và dược phẩm.
Từ khóa
#chấm lượng tử #ZnS #nanoconjugate #chitosan #sinh học #y sinhTài liệu tham khảo
Feynman RP: There's plenty of room at the bottom. Eng Sci 1960, 23: 22–36.
Toumey CP: Reading Feynman into nanotechnology. Techné: Res Philos Technol 2008, 12: 133–168. 10.5840/techne20081231
Emerich DF: Nanomedicine – prospective therapeutic and diagnostic applications. Expert Opin Biol Ther 2005, 5: 1–5. 10.1517/14712598.5.1.1
Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, Cullough J: The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine 2013, 9: 1–14.
Tan WB, Huang N, Zhang Y: Ultrafine biocompatible chitosan nanoparticles encapsulating multi-coloured quantum dots for bioapplications. J Colloid Interface Sci 2007, 310: 464–470. 10.1016/j.jcis.2007.01.083
Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS: Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym 2009, 76: 472–481. 10.1016/j.carbpol.2008.11.015
Dash M, Chiellini F, Ottenbrite RM, Chiellini E: Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 2011, 36: 981–1014. 10.1016/j.progpolymsci.2011.02.001
Rinaudo M: Chitin and chitosan: properties and applications. Prog Polym Sci 2006, 31: 603–632. 10.1016/j.progpolymsci.2006.06.001
Xia W, Liu P, Zhang J, Chen J: Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll 2011, 25: 170–179. 10.1016/j.foodhyd.2010.03.003
Zhang J, Xia W, Liu P, Cheng Q, Tahi T, Gu W, Li B: Chitosan modification and pharmaceutical/biomedical applications. Mar Drugs 2010, 8: 1962–1987. 10.3390/md8071962
Božanić DK, Djoković D, Bibić N, Nair PS, Georges MK, Radhakrishnan T: Biopolymer-protected CdSe nanoparticles. Carbohydr Res 2009, 344: 2383–2387. 10.1016/j.carres.2009.08.018
Chaudhuri RJ, Paria S: Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 2012, 112: 2373–2433. 10.1021/cr100449n
Mansur HS: Quantum dots and nanocomposites. WIRES Nanomeb Nanobi 2010, 2: 113–129. 10.1002/wnan.78
Wang H, Wang T, Wang X, Liu R, Wang B, Wang H, Xu Y, Zhang J, Duan J: Double-shelled ZnO/CdSe/CdTe nanocable arrays for photovoltaic applications: microstructure evolution and interfacial energy alignment. J Mater Chem 2012, 22: 12532–12537. 10.1039/c2jm32253f
Wang X, Zhu H, Xu Y, Wang H, Tao Y, Hark S, Xiao X, Li Q: Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties. ACS Nano 2010, 22: 3302–3308.
Wang B, Ding H, Hu Y, Zhou H, Wang S, Wang T, Liu R, Zhang J, Wang X, Wang H: Power conversion efficiency enhancement of various size CdS quantum dots and dye co-sensitized solar cells. Int J Hydrogen Energ 2013, 38: 16733–16739. 10.1016/j.ijhydene.2013.03.062
Mansur HS, Mansur AAP, Curti E, de Almeida MV: Bioconjugation of quantum-dots with chitosan and N, N, N-trimethyl chitosan. Carbohydr Polym 2012, 90: 189–196. 10.1016/j.carbpol.2012.05.022
Mansur HS, Mansur AAP, Curti E, de Almeida MV: Functionalized-chitosan/quantum dots nano-hybrids for nanomedicine applications: towards biolabeling and biosorbing phosphate metabolites. J Mater Chem B 2013, 1: 1696–1711. 10.1039/c3tb00498h
Santos JCC, Mansur AAP, Mansur HS: One-step biofunctionalization of quantum dots with chitosan and N-palmitoyl chitosan for potential biomedical applications. Molecules 2013, 18: 6550–6572. 10.3390/molecules18066550
Chang S-Q, Kang B, Dai Y-D, Zhang H-X, Chen D: One-step fabrication of biocompatible chitosan coated ZnS and ZnS:Mn2+ quantum dots via gamma-radiation route. Nanoscale Res Lett 2011, 6: 591. 10.1186/1556-276X-6-591
Green M: The nature of quantum dot capping ligands. J Mater Chem 2010, 20: 5797–5809. 10.1039/c0jm00007h
Yong K-T, Law W-C, Hu R, Ye L, Liu L, Swihart MT, Prasad PN: Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem Soc Rev 2013, 42: 1236–1250. 10.1039/c2cs35392j
Mansur HS, Mansur AAP: CdSe quantum dots stabilized by carboxylic-functionalized PVA: synthesis and UV–vis spectroscopy characterization. Mater Chem Phys 2011, 125: 709–717. 10.1016/j.matchemphys.2010.09.068
Mansur HS, Mansur AAP, González JC: Synthesis and characterization of CdS quantum dots with carboxylic-functionalized poly (vinyl alcohol) for bioconjugation. Polymer 2011, 52: 1045–1054. 10.1016/j.polymer.2011.01.004
Mansur HS, Mansur AAP, González JC: Biomolecule-quantum dot systems for bioconjugation applications. Colloids Surf B: Biointerfaces 2011, 84: 360–368. 10.1016/j.colsurfb.2011.01.027
Mansur HS, Mansur AAP, González JC: Enzyme-polymers conjugated to quantum-dots for sensing applications. Sensors 2011, 11: 9951–9972. 10.3390/s111009951
Mansur HS, Mansur AAP: Fluorescent nanohybrids: quantum-dots coupled to polymer-recombinant protein conjugates for the recognition of biological hazards. J Mater Chem 2012, 22: 9006–9018. 10.1039/c2jm31168b
Mehta SK, Kumar S, Gradzielski M: Growth, stability, optical and photoluminescent properties of aqueous colloidal ZnS nanoparticles in relation to surfactant molecular structure. J Colloid Interface Sci 2011, 360: 497–507. 10.1016/j.jcis.2011.04.079
Torres MA, Vieira RS, Beppu MM, Santana CC: Produção e caracterização de microesferas de quitosana modificadas quimicamente. Polímeros 2005, 15: 306–312. in Portuguese in Portuguese
Delgado AV, González-Caballero F, Hunter RJ, Koopal LK, Lyklema J: Measurement and interpretation of electrokinetic phenomena. Pure Appl Chem 2005, 77: 1753–1805. 10.1351/pac200577101753
Brus LE: Electron–electron–hole in small semiconductors crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 1984, 80: 4403–4409. 10.1063/1.447218
Tauc J, Menth A: States in the gap. J Non-Cryst Solids 1972, 8–10: 569–585.
Jaiswal A, Sanpui P, Chattopadhyay A, Ghosh SS: Investigating fluorescence quenching of ZnS quantum dots by silver nanoparticles. Plasmonics 2011, 6: 125–132. 10.1007/s11468-010-9177-0
Mall M, Kumar L: Optical studies of Cd2+ and Mn2+ Co-doped ZnS nanocrystals. J Lumin 2010, 130: 660–665. 10.1016/j.jlumin.2009.11.012
Cooper JK, Franco AM, Gul S, Corrado C, Zhang JZ: Characterization of primary amine capped CdSe, ZnSe, and ZnS quantum dots by FT-IR: determination of surface bonding interaction and identification of selective desorption. Langmuir 2011, 27: 8486–8493. 10.1021/la201273x
Fang J, Holloway PH, Yu JE, Jones KS, Pathangey B, Brettschneider E, Anderson TJ: MOCVD growth of non-epitaxial and epitaxial ZnS thin films. Appl Surf Sci 1993, 70/71: 701–706.
Chen R, Li D, Liu B, Peng Z, Gurzadyan GG, Xiong O, Sun H: Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature. Nano Lett 2010, 10: 4956–4961. 10.1021/nl102987z
Wageh S, Ling ZS, Xu-Rong X: Growth and optical properties of colloidal ZnS nanoparticles. J Cryst Growth 2003, 255: 332–337. 10.1016/S0022-0248(03)01258-2
Becker WG, Bard AJ: Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions. J Phys Chem 1983, 87: 4888–4893. 10.1021/j150642a026
Denzler D, Olschewski M, Sattler K: Luminescence studies of localized gap states in colloidal ZnS nanocrystals. J Appl Phys 1998, 84: 2841–2845. 10.1063/1.368425
Tarasov K, Houssein D, Destarac M, Marcotte N, Gérardin C, Tichit D: Stable aqueous colloids of ZnS quantum dots prepared using double hydrophilic block copolymers. New J Chem 2013, 37: 508–514. 10.1039/c2nj40738h
Zheng Y, Gao S, Ying JY: Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots. Adv Mater 2007, 19: 376–380. 10.1002/adma.200600342
Barman B, Sarma KC: Luminescence properties of ZnS quantum dots embedded in polymer matrix. Chalcogenide Lett 2011, 8: 171–176.
Li Z, Du Y, Zhang Z, Pang D: Preparation and characterization of CdS quantum dots chitosan biocomposite. React Funct Polym 2003, 55: 35–43. 10.1016/S1381-5148(02)00197-9
Mansur HS, Costa ES Jr, Mansur AAP, Barbosa-Stancioli EB: Cytocompatibility evaluation in cell-culture systems of chemically crosslinked chitosan/PVA hydrogels. Mater Sci Eng C 2009, 29: 1574–1583. 10.1016/j.msec.2008.12.012
Riva R, Ragelle H, Des Rieux A, Duhem N, Jérôme C, Préat V: Chitosan and chitosan derivatives in drug delivery and tissue engineering. Adv Polym Sci 2011, 244: 19–44. 10.1007/12_2011_137
Varma AJ, Deshpande SV, Kennedy JF: Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 2004, 55: 77–93. 10.1016/j.carbpol.2003.08.005
Rangel-Mendeza R, Monroy-Zepedab R, Leyva-Ramosb E, Diaz-Floresa PE, Shirai K: Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: pH and organic matter effect. J Hazard Mater 2009, 162: 503–511. 10.1016/j.jhazmat.2008.05.073
Rivas JCM, Salvagni E, Parsons S: Investigating the effect of hydrogen bonding environments in amide cleavage reactions at zinc(II) complexes with intramolecular amide oxygen co-ordination. Dalton Trans 2004, 21: 4185–4192.
Wang XH, Du YM, Liu H: Preparation, characterization and antimicrobial activity of chitosan–Zn complex. Carbohydr Polym 2004, 56: 21–26. 10.1016/j.carbpol.2003.11.007
Hasan S, Ghosh TK, Viswanath DS, Boddu VM: Dispersion of chitosan on perlite for enhancement of copper (II) adsorption capacity. J Hazard Mater 2008, 152: 826–837. 10.1016/j.jhazmat.2007.07.078
Wang M, Zhang Q, Hao W, Sun Z–X: Surface stoichiometry of zinc sulphide and its effect on the adsorption behaviors of xanthate. Chem Cent J 2011, 5: 73. 10.1186/1752-153X-5-73
Sonia TA, Sharma CP: Chitosan and its derivatives for drug delivery perspective. Adv Polym Sci 2011, 243: 23–54. 10.1007/12_2011_117
Chenite A, Buschmann M, Wang D, Chaput C, Kandani N: Rheological characterization of thermogelling chitosan/glycerol-phosphate solutions. Carbohydr Polym 2001, 46: 39–47. 10.1016/S0144-8617(00)00281-2
Claesson PM, Ninham BW: pH dependent interactions between adsorbed chitosan layers. Langmuir 1992, 8: 1406–1412. 10.1021/la00041a027
Kalyuzhny G, Murray RW: Ligand effects on the optical properties of CdSe nanocrystals. J Phys Chem B 2005, 109: 7012–7021. 10.1021/jp045352x
Landes CF, Braun M, El-Sayed MA: On the nanoparticle to molecular size transition: fluorescence quenching studies. J Phys Chem B 2011, 105: 10554–10558.
Baker DR, Kamat PV: Tuning the emission of CdSe quantum dots by controlled trap enhancement. Langmuir 2010, 26: 11272–11276. 10.1021/la100580g