One single method to produce native and Tat-fused recombinant human α-synuclein in Escherichia coli
Tóm tắt
Human α-synuclein is a small-sized, natively unfolded protein that in fibrillar form is the primary component of Lewy bodies, the pathological hallmark of Parkinson’s disease. Experimental evidence suggests that α-synuclein aggregation is the key event that triggers neurotoxicity although additional findings have proposed a protective role of α-synuclein against oxidative stress. One way to address the mechanism of this protective action is to evaluate α-synuclein-mediated protection by delivering this protein inside cells using a chimeric protein fused with the Tat-transduction domain of HIV Tat, named TAT-α-synuclein. A reliable protocol was designed to efficiently express and purify two different forms of human α-synuclein. The synthetic cDNAs encoding for the native α-synuclein and the fusion protein with the transduction domain of Tat protein from HIV were overexpressed in a BL21(DE3) E. coli strain as His-tagged proteins. The recombinant proteins largely localized (≥ 85%) to the periplasmic space. By using a quick purification protocol, based on recovery of periplasmic space content and metal-chelating chromatography, the recombinant α-synuclein protein forms could be purified in a single step to ≥ 95% purity. Both α-synuclein recombinant proteins form fibrils and the TAT-α-synuclein is also cytotoxic in the micromolar concentration range. To further characterize the molecular mechanisms of α-synuclein neurotoxicity both in vitro and in vivo and to evaluate the relevance of extracellular α-synuclein for the pathogenesis and progression of Parkinson’s disease, a suitable method to produce different high-quality forms of this pathological protein is required. Our optimized expression and purification procedure offers an easier and faster means of producing different forms (i.e., both the native and the TAT-fusion form) of soluble recombinant α-synuclein than previously described procedures.
Tài liệu tham khảo
Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M: α-synuclein in Lewy bodies. Nature. 1997, 388: 839-840. 10.1038/42166.
Lee MK, Stirling W, Xu Y, Xu X, Qui D, Mandir AS, Dawson TM, Copeland NG, Jenkins NA, Price DL: Human alpha-synuclein-harboring familial Parkinson's disease-linked Ala-53→Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc Natl Acad Sci U S A. 2002, 99: 8968-8973. 10.1073/pnas.132197599.
Periquet M, Fulga T, Myllykangas L, Schlossmacher MG, Feany MB: Aggregated alpha-synuclein mediates dopaminergic neurotoxicity in vivo. J Neurosci. 2007, 27: 3338-3346. 10.1523/JNEUROSCI.0285-07.2007.
Quilty MC, King AE, Gai WP, Pountney DL, West AK, Vickers JC, Dickson TC: Alpha-synuclein is upregulated in neurones in response to chronic oxidative stress and is associated with neuroprotection. Exp Neurol. 2006, 199: 249-256. 10.1016/j.expneurol.2005.10.018.
Albani D, Peverelli E, Rametta R, Batelli S, Veschini L, Negro A, Forloni G: Protective effect of TAT-delivered α-synuclein: relevance of the C-terminal domain and involvement of HSP70. FASEB J. 2004, 18: 1713-1715.
Jakes R, Spillantini MG, Goedert M: Identification of two distinct synucleins from human brain. FEBS Lett. 1994, 345: 27-32. 10.1016/0014-5793(94)00395-5.
Giasson BI, Uryu K, Trojanowski JQ, Lee VM: Mutant and wild type human α-synucleins assemble into elongated filaments with distinct morphologies in vitro. J Biol Chem. 1999, 274: 7619-7622. 10.1074/jbc.274.12.7619.
Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT: NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry. 1996, 35: 13709-13715. 10.1021/bi961799n.
Narhi L, Wood SJ, Steavenson S, Jiang Y, Wu GM, Anafi D, Kaufman SA, Martin F, Sitney K, Denis P, Louis JC, Wypych J, Biere AL, Citron M: Both familial Parkinson’s disease mutations accelerate α-synuclein aggregation. J Biol Chem. 1999, 274: 9843-9846. 10.1074/jbc.274.14.9843.
Uversky VN, Li J, Fink AL: Evidence for a partially folded intermediate in α-synuclein fibril formation. J Biol Chem. 2001, 276: 10737-10744. 10.1074/jbc.M010907200.
Choi JY, Sung YM, Park HJ, Hur EH, Lee SJ, Hahn C, Min BR, Kim IK, Kang S, Rhim H: Rapid purification and analysis of α-synuclein proteins: C-terminal truncation promotes the conversion of α-synuclein into a protease-sensitive form in Escherichia coli. Biotechnol Appl Biochem. 2002, 36: 33-40. 10.1042/BA20020004.
Huang C, Ren G, Zhou H, Wang CC: A new method for purification of recombinant human α-synuclein in Escherichia coli. Protein Expr Purif. 2005, 42: 173-177. 10.1016/j.pep.2005.02.014.
Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J: Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA. 1994, 91: 664-668. 10.1073/pnas.91.2.664.
Barsoum J, Moore C, Seery J, Daikh Y, Chen LL, Corina K, Moy P, Brown R, Shapiro R, Taylor F, Androphy E, Pepinsky B, Fawell S: Tat-mediated delivery of heterologous macromolecules into living cells. Restor Neurol Neurosci. 1995, 8: 11-12.
Nagahara H, Vocero-Akbani AM, Snyder EL, Ho A, Latham DG, Lissy NA, Becker-Hapak M, Ezhevsky SA, Dowdy SF: Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med. 1998, 4: 1449-1452. 10.1038/4042.
Schwarze SR, Dowdy SF: In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci. 2000, 21: 45-48. 10.1016/S0165-6147(99)01429-7.
Becker-Hapak M, McAllister SS, Dowdy SF: TAT-mediated protein transduction into mammalian cells. Methods. 2001, 24: 247-256. 10.1006/meth.2001.1186.
Jones SW, Christison R, Bundell K, Voyce CJ, Brockbank SM, Newham P, Lindsay MA: Characterisation of cell-penetrating peptide-mediated peptide delivery. Br J Pharmacol. 2005, 145: 1093-1102. 10.1038/sj.bjp.0706279.
Gustafsson AB, Gottlieb RA, Granville DJ: TAT-mediated protein transduction: delivering biologically active proteins to the heart. Methods Mol Med. 2005, 112: 81-90.
Fittipaldi A, Giacca M: Transcellular protein transduction using the Tat protein of HIV-1. Adv Drug Deliv Rev. 2005, 57: 597-608. 10.1016/j.addr.2004.10.011.
Kloepper KD, Woods WS, Winter KA, George JM, Rienstra CM: Preparation of alpha-synuclein fibrils for solid-state NMR: expression, purification, and incubation of wild-type and mutant forms. Protein Expr Purif. 2006, 48: 112-117. 10.1016/j.pep.2006.02.009.
Hammarström M, Hellgren N, van Den Berg S, Berglund H, Härd T: Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Sci. 2002, 11: 313-321.
Ren G, Wang X, Hao S, Hu H, Wang CC: Translocation of alpha-synuclein expressed in Escherichia coli. J Bacteriol. 2007, 189: 2777-2786. 10.1128/JB.01406-06.
Uversky VN, Li J, Fink AL: Metal-triggered structural transformations, aggregation, and fibrillation of human α-synuclein. J Biol Chem. 2001, 276: 44284-44296. 10.1074/jbc.M105343200.
Hu HY, Li Q, Cheng HC, Du HN: β-Sheet structure formation of protein in solid state as revealed by circular dichroism spectroscopy. Biopolymers. 2001, 62: 15-21. 10.1002/1097-0282(2001)62:1<15::AID-BIP30>3.0.CO;2-J.
Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, Lansbury PT: α-Synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol. 2002, 322: 1089-1102. 10.1016/S0022-2836(02)00735-0.
Masuda M, Dohmae N, Nonaka T, Oikawa T, Hisanaga S, Goedert M, Hasegawa M: Cysteine misincorporation in bacterially expressed human alpha-synuclein. FEBS Lett. 2006, 580: 1775-1779. 10.1016/j.febslet.2006.02.032.
Xie W, Li X, Li C, Zhu W, Jankovic J, Le W: Proteasome inhibition modeling nigral neuron degeneration in Parkinson's disease. J Neurochem. 2010, 115: 188-199. 10.1111/j.1471-4159.2010.06914.x.
Batelli S, Peverelli E, Rodilossi S, Forloni G, Albani D: Macroautophagy and the proteasome are differently involved in the degradation of alpha-synuclein wild type and mutated A30P in an in vitro inducible model (PC12/TetOn). Neuroscience. 2011, 195: 128-137.
Sampaio-Marques B, Felgueiras C, Silva A, Rodrigues M, Tenreiro S, Franssens V, Reichert AS, Outeiro TF, Winderickx J, Ludovico P: SNCA (α-synuclein)-induced toxicity in yeast cells is dependent on sirtuin 2 (Sir2)-mediated mitophagy. Autophagy. 2012, 8: 1494-1509.
Cristóvão AC, Guhathakurta S, Bok E, Je G, Yoo SD, Choi DH, Kim YS: NADPH oxidase 1 mediates α-synucleinopathy in Parkinson's disease. J Neurosci. 2012, 32: 14465-14477. 10.1523/JNEUROSCI.2246-12.2012.
Green M, Loewenstein PM: Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell. 1988, 55: 1179-1188. 10.1016/0092-8674(88)90262-0.
Frankel AD, Pabo CO: Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 1988, 55: 1189-1193. 10.1016/0092-8674(88)90263-2.
Volontè F, Pollegioni L, Molla G, Frattini L, Marinelli F, Piubelli L: Production of recombinant cholesterol oxidase containing covalent-bound FAD in Escherichia coli. BMC Biotechnol. 2010, 10: 33-10.1186/1472-6750-10-33.
Volontè F, Marinelli F, Gastaldo L, Sacchi S, Pilone MS, Pollegioni L, Molla G: Optimization of glutaryl-7-aminocephalosporanic acid acylase expression in E. coli. Protein Expr Purif. 2008, 61: 131-137. 10.1016/j.pep.2008.05.010.
Fantinato S, Pollegioni L, Pilone MS: Engineering, expression and purification of a His-tagged chimeric D-amino acid oxidase from Rhodotorula gracilis. Enz Microb Technol. 2001, 29: 407-412. 10.1016/S0141-0229(01)00400-8.
Liu S, Tobias R, McClure S, Styba G, Shi Q, Jackovski G: Removal of endotoxin from recombinant protein preparations. Clin Biochem. 1997, 30: 455-463. 10.1016/S0009-9120(97)00049-0.
Caldinelli L, Iametti S, Barbiroli A, Bonomi F, Fessas D, Molla G, Pilone MS, Pollegioni L: Dissecting the structural determinants of the stability of cholesterol oxidase containing covalently bound flavin. J Biol Chem. 2005, 280: 22572-22581. 10.1074/jbc.M500549200.
Andrade MA, Chacón P, Merelo JJ, Morán F: Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng. 1993, 6: 383-390. 10.1093/protein/6.4.383.