One-Step Synthesis of Titanium Oxyhydroxy-Fluoride Rods and Research on the Electrochemical Performance for Lithium-ion Batteries and Sodium-ion Batteries
Tóm tắt
Titanium oxyhydroxy-fluoride, TiO0.9(OH)0.9F1.2 · 0.59H2O rods with a hexagonal tungsten bronze (HTB) structure, was synthesized via a facile one-step solvothermal method. The structure, morphology, and component of the products were characterized by X-ray powder diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), inductively coupled plasma optical emission spectroscopy (ICP-OES), ion chromatograph, energy-dispersive X-ray (EDX) analyses, and so on. Different rod morphologies which ranged from nanoscale to submicron scale were simply obtained by adjusting reaction conditions. With one-dimension channels for Li/Na intercalation/de-intercalation, the electrochemical performance of titanium oxyhydroxy-fluoride for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) was also studied. Electrochemical tests revealed that, for LIBs, titanium oxyhydroxy-fluoride exhibited a stabilized reversible capacity of 200 mAh g−1 at 25 mA g−1 up to 120 cycles in the electrode potential range of 3.0–1.2 V and 140 mAh g−1 at 250 mA g−1 up to 500 cycles, especially; for SIBs, a high capacity of 100 mAh g−1 was maintained at 25 mA g−1 after 115 cycles in the potential range of 2.9–0.5 V.
Tài liệu tham khảo
Demourgues A, Francke L, Durand E, Tressaud A (2002) Chemistry and key structural features of oxyhydroxy-fluorides: relationships with the acidic character, thermal stability and surface area. J Fluorine Chem 114(2):229–236
Demourgues A, Penin N, Dambournet D, Clarenc R, Tressaud A, Durand E (2012) About MX3 and MX2 (Mn+ = Mg2+, Al3+, Ti4+, Fe3+; Xp− = F−, O2−, OH−) nanofluorides. J Fluorine Chem 134:35–43. doi:10.1016/j.jfluchem.2011.02.006
Demourgues A, Wattiaux A (2011) Investigation of Fe-based oxyhydroxy-fluoride with hollandite-type structure. J Fluorine Chem 132(10):690–697. doi:10.1016/j.jfluchem.2011.04.005
Estruga M, Casas-Cabanas M, Gutiérrez-Tauste D, Domingo C, Ayllón JA (2010) Straightforward synthesis of a novel hydronium titanium oxyfluoride. Mater Chem Phys 124(2–3):904–907. doi:10.1016/j.matchemphys.2010.08.008
Duttine M, Dambournet D, Penin N, Carlier D, Bourgeois L, Wattiaux A , Chapman KW, Chupas PJ, Groult H, Durand E, Demourgues A (2014) Tailoring the composition of a mixed anion iron-based fluoride compound: evidence for anionic vacancy and electrochemical performance in lithium cells. Chem Mater 26(14):4190–4199. doi:10.1021/cm501396n
Dambournet D, Chapman KW, Chupas PJ, Gerald RE 2nd, Penin N, Labrugere C, Demourgues A, Tressaud A, Amine K (2011) Dual lithium insertion and conversion mechanisms in a titanium-based mixed-anion nanocomposite. J Am Chem Soc 133(34):13240–13243. doi:10.1021/ja204284h
Francke LC, Durand E, Demourgues A, Vimont A, Daturi M, Tressaud A (2003) Synthesis and characterization of Al3+, Cr3+, Fe3+ and Ga3+ hydroxyfluorides: correlations between structural features, thermal stability and acidic properties. J Mater Chem 13(9):2330. doi:10.1039/b303535b
Demourgues A, Penin N, Durand E, Weill F, Dambournet D, Viadère N, Tressaud A (2009) New titanium hydroxyfluoride Ti0.75(OH)1.5F1.5 as a UV absorber. Chem Mater 21(7):1275–1283
Dejneka MJ (1998) The luminescence and structure of novel transparent oxyfluoride glass-ceramics. J Non-Cryst Solids 239(1):149–155
Sronek L, Majimel J, Kihn Y, Montardi Y, Tressaud A, Feist M, Legein C, Buzaré JY, Body M, Demourgues A (2007) New highly divided Ce-Ca-based oxyfluorides with UV-shielding properties: study of the Ce1-xCaxO2-x and Ce1-xCaxO2-x-y/2Fy series. Chem Mater 19(21):5110–5121
Lin H, Maggard PA (2010) Microporosity, optical bandgap sizes, and photocatalytic activity of M(I)-Nb(V) (M = Cu, Ag) Oxyfluoride Hybrids. Cryst Growth Des 10(3):1323–1331. doi:10.1021/cg9013625
Wang J, Cao F, Bian Z, Leung MK, Li H (2014) Ultrafine single-crystal TiOF2 nanocubes with mesoporous structure, high activity and durability in visible light driven photocatalysis. Nanoscale 6(2):897–902. doi:10.1039/c3nr04489k
Shen Y, Wang X, Hu H, Jiang M, Yang X, Shu H (2015) A graphene loading heterogeneous hydrated forms iron based fluoride nanocomposite as novel and high-capacity cathode material for lithium/sodium ion batteries. J Power Sources 283:204–210. doi:10.1016/j.jpowsour.2015.02.097
Reddy MV, Madhavi S, Subba Rao GV, Chowdari BVR (2006) Metal oxyfluorides TiOF2 and NbO2F as anodes for Li-ion batteries. J Power Sources 162(2):1312–1321. doi:10.1016/j.jpowsour.2006.08.020
Deng D, Kim MG, Lee JY, Cho J (2009) Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci 2(8):818. doi:10.1039/b823474d
Louvain N, Karkar Z, El-Ghozzi M, Bonnet P, Guerin K, Willmann P (2014) Fluorination of anatase TiO2 towards titanium oxyfluoride TiOF2: a novel synthesis approach and proof of the Li-insertion mechanism. J Mater Chem A 2(37):15308–15315. doi:10.1039/C4TA02553A
Zeng Y, Zhang W, Xu C, Xiao N, Huang Y, Yu DY, Hng HH, Yan Q (2012) One-step solvothermal synthesis of single-crystalline TiOF2 nanotubes with high lithium-ion battery performance. Chemistry 18(13):4026–4030. doi:10.1002/chem.201103879
Pereira N, Badway F, Wartelsky M, Gunn S, Amatucci GG (2009) Iron oxyfluorides as high capacity cathode materials for lithium batteries. J Electrochem Soc 156(6):A407. doi:10.1149/1.3106132
Gocheva ID, Tanaka I, Doi T, Okada S, Yamaki J-I (2009) A new iron oxyfluoride cathode active material for Li-ion battery, Fe2OF4. Electrochem Commun 11(8):1583–1585. doi:10.1016/j.elecom.2009.06.001
Hamwi A, Al Saleh I (1994) Graphite oxyfluoride: behaviour as electrode material in lithium batteries. J Power Sources 48(3):311–325, http://dx.doi.org/10.1016/0378-7753(94)80028-6
Choi W, Manthiram A (2007) Influence of fluorine substitution on the electrochemical performance of 3 V spinel Li4Mn5O12 − ηFη cathodes. Solid State Ionics 178(27–28):1541–1545. doi:10.1016/j.ssi.2007.10.003
Bervas M, Klein LC, Amatucci GG (2006) Reversible conversion reactions with lithium in bismuth oxyfluoride nanocomposites. J Electrochem Soc 153(1):A159. doi:10.1149/1.2133712
Amatucci GG, Pereira N (2007) Fluoride based electrode materials for advanced energy storage devices. J Fluorine Chem 128(4):243–262. doi:10.1016/j.jfluchem.2006.11.016
Zhu J, Deng D (2015) Wet-chemical synthesis of phase-pure FeOF nanorods as high-capacity cathodes for sodium-ion batteries. Angew Chem Int Ed 54(10):3079–3083. doi:10.1002/anie.201410572
Xie S, Han X, Kuang Q, Fu J, Zhang L, Xie Z, Zheng L (2011) Solid state precursor strategy for synthesizing hollow TiO2 boxes with a high percentage of reactive {001} facets exposed. Chem Commun (Camb) 47(23):6722–6724. doi:10.1039/c1cc11542a
Bi Z, Paranthaman MP, Menchhofer PA, Dehoff RR, Bridges CA, Chi M, Guo B, Sun XG, Dai S (2013) Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J Power Sources 222:461–466. doi:10.1016/j.jpowsour.2012.09.019