One-Step Synthesis of Titanium Oxyhydroxy-Fluoride Rods and Research on the Electrochemical Performance for Lithium-ion Batteries and Sodium-ion Batteries

Nanoscale Research Letters - Tập 10 - Trang 1-7 - 2015
Biao Li1, Zhan Gao1, Dake Wang1, Qiaoyan Hao1, Yan Wang1, Yongkun Wang1, Kaibin Tang1
1Department of Chemistry and Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, People’s Republic of China

Tóm tắt

Titanium oxyhydroxy-fluoride, TiO0.9(OH)0.9F1.2 · 0.59H2O rods with a hexagonal tungsten bronze (HTB) structure, was synthesized via a facile one-step solvothermal method. The structure, morphology, and component of the products were characterized by X-ray powder diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), inductively coupled plasma optical emission spectroscopy (ICP-OES), ion chromatograph, energy-dispersive X-ray (EDX) analyses, and so on. Different rod morphologies which ranged from nanoscale to submicron scale were simply obtained by adjusting reaction conditions. With one-dimension channels for Li/Na intercalation/de-intercalation, the electrochemical performance of titanium oxyhydroxy-fluoride for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) was also studied. Electrochemical tests revealed that, for LIBs, titanium oxyhydroxy-fluoride exhibited a stabilized reversible capacity of 200 mAh g−1 at 25 mA g−1 up to 120 cycles in the electrode potential range of 3.0–1.2 V and 140 mAh g−1 at 250 mA g−1 up to 500 cycles, especially; for SIBs, a high capacity of 100 mAh g−1 was maintained at 25 mA g−1 after 115 cycles in the potential range of 2.9–0.5 V.

Tài liệu tham khảo

Demourgues A, Francke L, Durand E, Tressaud A (2002) Chemistry and key structural features of oxyhydroxy-fluorides: relationships with the acidic character, thermal stability and surface area. J Fluorine Chem 114(2):229–236 Demourgues A, Penin N, Dambournet D, Clarenc R, Tressaud A, Durand E (2012) About MX3 and MX2 (Mn+ = Mg2+, Al3+, Ti4+, Fe3+; Xp− = F−, O2−, OH−) nanofluorides. J Fluorine Chem 134:35–43. doi:10.1016/j.jfluchem.2011.02.006 Demourgues A, Wattiaux A (2011) Investigation of Fe-based oxyhydroxy-fluoride with hollandite-type structure. J Fluorine Chem 132(10):690–697. doi:10.1016/j.jfluchem.2011.04.005 Estruga M, Casas-Cabanas M, Gutiérrez-Tauste D, Domingo C, Ayllón JA (2010) Straightforward synthesis of a novel hydronium titanium oxyfluoride. Mater Chem Phys 124(2–3):904–907. doi:10.1016/j.matchemphys.2010.08.008 Duttine M, Dambournet D, Penin N, Carlier D, Bourgeois L, Wattiaux A , Chapman KW, Chupas PJ, Groult H, Durand E, Demourgues A (2014) Tailoring the composition of a mixed anion iron-based fluoride compound: evidence for anionic vacancy and electrochemical performance in lithium cells. Chem Mater 26(14):4190–4199. doi:10.1021/cm501396n Dambournet D, Chapman KW, Chupas PJ, Gerald RE 2nd, Penin N, Labrugere C, Demourgues A, Tressaud A, Amine K (2011) Dual lithium insertion and conversion mechanisms in a titanium-based mixed-anion nanocomposite. J Am Chem Soc 133(34):13240–13243. doi:10.1021/ja204284h Francke LC, Durand E, Demourgues A, Vimont A, Daturi M, Tressaud A (2003) Synthesis and characterization of Al3+, Cr3+, Fe3+ and Ga3+ hydroxyfluorides: correlations between structural features, thermal stability and acidic properties. J Mater Chem 13(9):2330. doi:10.1039/b303535b Demourgues A, Penin N, Durand E, Weill F, Dambournet D, Viadère N, Tressaud A (2009) New titanium hydroxyfluoride Ti0.75(OH)1.5F1.5 as a UV absorber. Chem Mater 21(7):1275–1283 Dejneka MJ (1998) The luminescence and structure of novel transparent oxyfluoride glass-ceramics. J Non-Cryst Solids 239(1):149–155 Sronek L, Majimel J, Kihn Y, Montardi Y, Tressaud A, Feist M, Legein C, Buzaré JY, Body M, Demourgues A (2007) New highly divided Ce-Ca-based oxyfluorides with UV-shielding properties: study of the Ce1-xCaxO2-x and Ce1-xCaxO2-x-y/2Fy series. Chem Mater 19(21):5110–5121 Lin H, Maggard PA (2010) Microporosity, optical bandgap sizes, and photocatalytic activity of M(I)-Nb(V) (M = Cu, Ag) Oxyfluoride Hybrids. Cryst Growth Des 10(3):1323–1331. doi:10.1021/cg9013625 Wang J, Cao F, Bian Z, Leung MK, Li H (2014) Ultrafine single-crystal TiOF2 nanocubes with mesoporous structure, high activity and durability in visible light driven photocatalysis. Nanoscale 6(2):897–902. doi:10.1039/c3nr04489k Shen Y, Wang X, Hu H, Jiang M, Yang X, Shu H (2015) A graphene loading heterogeneous hydrated forms iron based fluoride nanocomposite as novel and high-capacity cathode material for lithium/sodium ion batteries. J Power Sources 283:204–210. doi:10.1016/j.jpowsour.2015.02.097 Reddy MV, Madhavi S, Subba Rao GV, Chowdari BVR (2006) Metal oxyfluorides TiOF2 and NbO2F as anodes for Li-ion batteries. J Power Sources 162(2):1312–1321. doi:10.1016/j.jpowsour.2006.08.020 Deng D, Kim MG, Lee JY, Cho J (2009) Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci 2(8):818. doi:10.1039/b823474d Louvain N, Karkar Z, El-Ghozzi M, Bonnet P, Guerin K, Willmann P (2014) Fluorination of anatase TiO2 towards titanium oxyfluoride TiOF2: a novel synthesis approach and proof of the Li-insertion mechanism. J Mater Chem A 2(37):15308–15315. doi:10.1039/C4TA02553A Zeng Y, Zhang W, Xu C, Xiao N, Huang Y, Yu DY, Hng HH, Yan Q (2012) One-step solvothermal synthesis of single-crystalline TiOF2 nanotubes with high lithium-ion battery performance. Chemistry 18(13):4026–4030. doi:10.1002/chem.201103879 Pereira N, Badway F, Wartelsky M, Gunn S, Amatucci GG (2009) Iron oxyfluorides as high capacity cathode materials for lithium batteries. J Electrochem Soc 156(6):A407. doi:10.1149/1.3106132 Gocheva ID, Tanaka I, Doi T, Okada S, Yamaki J-I (2009) A new iron oxyfluoride cathode active material for Li-ion battery, Fe2OF4. Electrochem Commun 11(8):1583–1585. doi:10.1016/j.elecom.2009.06.001 Hamwi A, Al Saleh I (1994) Graphite oxyfluoride: behaviour as electrode material in lithium batteries. J Power Sources 48(3):311–325, http://dx.doi.org/10.1016/0378-7753(94)80028-6 Choi W, Manthiram A (2007) Influence of fluorine substitution on the electrochemical performance of 3 V spinel Li4Mn5O12 − ηFη cathodes. Solid State Ionics 178(27–28):1541–1545. doi:10.1016/j.ssi.2007.10.003 Bervas M, Klein LC, Amatucci GG (2006) Reversible conversion reactions with lithium in bismuth oxyfluoride nanocomposites. J Electrochem Soc 153(1):A159. doi:10.1149/1.2133712 Amatucci GG, Pereira N (2007) Fluoride based electrode materials for advanced energy storage devices. J Fluorine Chem 128(4):243–262. doi:10.1016/j.jfluchem.2006.11.016 Zhu J, Deng D (2015) Wet-chemical synthesis of phase-pure FeOF nanorods as high-capacity cathodes for sodium-ion batteries. Angew Chem Int Ed 54(10):3079–3083. doi:10.1002/anie.201410572 Xie S, Han X, Kuang Q, Fu J, Zhang L, Xie Z, Zheng L (2011) Solid state precursor strategy for synthesizing hollow TiO2 boxes with a high percentage of reactive {001} facets exposed. Chem Commun (Camb) 47(23):6722–6724. doi:10.1039/c1cc11542a Bi Z, Paranthaman MP, Menchhofer PA, Dehoff RR, Bridges CA, Chi M, Guo B, Sun XG, Dai S (2013) Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J Power Sources 222:461–466. doi:10.1016/j.jpowsour.2012.09.019