On the use and significance of isentropic potential vorticity maps

Quarterly Journal of the Royal Meteorological Society - Tập 111 Số 470 - Trang 877-946 - 1985
Brian J. Hoskins1, M. E. McIntyre2, Andrew W. Robertson3
1Department of Meteorology; University of Reading
2 Department of Applied Mathematics and Theoretical Physics, University of Cambridge
3Laboratoire de Physique et Chimie Marines, Université Pierre et Marie Curie, 75230 Paris Cédex 05

Tóm tắt

AbstractThe two main principles underlying the use of isentropic maps of potential vorticity to represent dynamical processes in the atmosphere are reviewed, including the extension of those principles to take the lower boundary condition into account. the first is the familiar Lagrangian conservation principle, for potential vorticity (PV) and potential temperature, which holds approximately when advective processes dominate frictional and diabatic ones. the second is the principle of ‘invertibility’ of the PV distribution, which holds whether or not diabatic and frictional processes are important. the invertibility principle states that if the total mass under each isentropic surface is specified, then a knowledge of the global distribution of PV on each isentropic surface and of potential temperature at the lower boundary (which within certain limitations can be considered to be part of the PV distribution) is sufficient to deduce, diagnostically, all the other dynamical fields, such as winds, temperatures, geopotential heights, static stabilities, and vertical velocities, under a suitable balance condition. the statement that vertical velocities can be deduced is related to the well‐known omega equation principle, and depends on having sufficient information about diabatic and frictional processes. Quasi‐geostrophic, semigeostrophic, and ‘nonlinear normal mode initialization’ realizations of the balance condition are discussed. an important constraint on the mass‐weighted integral of PV over a material volume and on its possible diabatic and frictional change is noted.Some basic examples are given, both from operational weather analyses and from idealized theoretical models, to illustrate the insights that can be gained from this approach and to indicate its relation to classical synoptic and air‐mass concepts. Included are discussions of (a) the structure, origin and persistence of cutoff cyclones and blocking anticyclones, (b) the physical mechanisms of Rossby wave propagation, baroclinic instability, and barotropic instability, and (c) the spatially and temporally nonuniform way in which such waves and instabilities may become strongly nonlinear, as in an occluding cyclone or in the formation of an upper air shear line. Connections with principles derived from synoptic experience are indicated, such as the ‘PVA rule’ concerning positive vorticity advection on upper air charts, and the role of disturbances of upper air origin, in combination with low‐level warm advection, in triggering latent heat release to produce explosive cyclonic development. In all cases it is found that time sequences of isentropic potential vorticity and surface potential temperature charts—which succinctly summarize the combined effects of vorticity advection, thermal advection, and vertical motion without requiring explicit knowledge of the vertical motion field—lead to a very clear and complete picture of the dynamics. This picture is remarkably simple in many cases of real meteorological interest. It involves, in principle, no sacrifices in quantitative accuracy beyond what is inherent in theconceptof balance, as used for instance in the initialization of numerical weather forecasts.

Từ khóa


Tài liệu tham khảo

10.1256/smsqj.46805

10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2

10.1017/S0022112078002773

Batchelor G. K., 1967, An introduction to fluid dynamics

10.1175/1520-0477-63.3.277

10.1111/j.2153-3490.1949.tb01257.x

Bjerknes J., 1937, Die Theorie der aussertropischen Zyklonenbildung, Meteor. Zeitschr., 54, 460

Bjerknes V.1898aÜber die Bildung von Circulationsbewegung und Wirbeln in reibungslosen Flüssigkeiten.Videnskabsselskapets Skrifter. I Math. Naturv. Klasse No. 5

Kgl. Svenska Vetenskapsakad. Handl. 1898 31 4 Über einen hydrodynamischen Fundamentalsatz und seine Anwendung besonders auf die Mechanik der Atmosphäre und des Weltmeeres

1901Zirkulation relativ zu der Erde.Oevers. Fin. Vetensk.‐Soc. Foerh. 739–775

1902, Zirkulation relativ zu der Erde, Met. Z., 19, 97

10.1175/1520-0450(1973)012<0737:NFEBOT>2.0.CO;2

10.1175/1520-0493(1974)102<0813:SRPIIC>2.0.CO;2

1984, An isentropic coordinate model suitable for lee cyclogenesis simulation, Rivista Meteor. Aeronaut., 43, 189

Bleck R., 1984, A preliminary analysis of the role of potential vorticity in Alpine lee cyclogenesis, Beitr. Phys. Atmos., 57, 357

10.1175/1520-0469(1968)025<0929:OTSOQG>2.0.CO;2

10.1175/1520-0469(1980)037<0064:ACBTHB>2.0.CO;2

10.1175/1520-0469(1981)038<1100:TGCT>2.0.CO;2

10.1175/1520-0493(1981)109<1542:TPDSOF>2.0.CO;2

10.1002/qj.49709239302

10.1002/qj.49709239303

10.1175/1520-0477-54.5.394

10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2

10.1029/JZ066i001p00083

10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2

Charney J. G., 1981, Evolution of physical oceanography, 504

10.1002/qj.49711146805

Cullen M. J. P., 1984, An extended Lagrangian theory of semi‐geostrophic frontogenesis, J. Atmos. Sci., 41, 1477, 10.1175/1520-0469(1984)041<1477:AELTOS>2.0.CO;2

10.1029/RG019i003p00450

10.1007/BF02247210

1967‘Transport and diffusion of stratospheric radioactivity based on synoptic hemispheric analyses of potential vorticity’. Dept. of Met. Penn. State Univ. Report NYO‐3317‐3

10.1175/1520-0469(1968)025<0502:STEBOR>2.0.CO;2

Danielsen E. F.andDiercks J. W.1967‘A study of the tropopause based on numerical integration of the potential vorticity equation’. Final Report Part I. Contract AT(30‐1)‐3317. U.S. Atomic Energy Commission

10.1029/JC075i012p02353

10.1175/1520-0469(1981)038<0427:AIOSWI>2.0.CO;2

10.1103/PhysRevLett.40.859

Dritschel D. G., 1985, The nonlinear evolution of rotating configurations of uniform vorticity, J. Fluid Mech.

Dunkerton T. J., 1981, Some Eulerian and Lagrangian diagnostics for a model stratospheric warming, J. Atmos. Sci., 38, 819, 10.1175/1520-0469(1981)038<0819:SEALDF>2.0.CO;2

10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2

Eliassen A., 1948, The quasi‐static equations of motion, Geofys. Publ., 17

10.1146/annurev.fl.14.010182.000245

10.1007/BF02590155

10.1002/qj.49711046302

Eliassen A., 1957, Handbuch der Physik, 1

Eliassen A., 1968, A numerical integration experiment with a model atmosphere based on isentropic surfaces, Met. Ann., 5, 45

1970, A numerical integration experiment with a six‐level atmospheric model with isentropic information surfaces, Met. Ann., 5, 429

Elliott R. D., 1956, Low latitude vorticity injections and the development of large scale anomalous circulation patterns, Bull. Amer. Met. Soc., 37, 270, 10.1175/1520-0477-37.6.270

10.1175/1520-0493(1971)099<0067:DSOATD>2.3.CO;2

Ertel H., 1942, Ein Neuer hydrodynamischer Wirbelsatz, Met. Z., 59, 271

10.1175/1520-0469(1982)039<1663:TIGODI>2.0.CO;2

10.1111/j.1600-0870.1984.tb00236.x

10.1063/1.1761436

10.1017/S0022112081001341

1982, Atmosphere‐ocean dynamics

10.1002/qj.49711046605

Goldstein S., 1938, Modern developments in fluid mechanics

10.1002/j.1477-8696.1977.tb04532.x

10.1175/1520-0493(1983)111<1137:OTEOTI>2.0.CO;2

10.1017/S0022112085003020

10.1080/00018737500101371

10.1038/308698a0

10.1111/j.2153-3490.1981.tb01757.x

10.1007/978-1-935704-31-7

10.1002/qj.49710042520

10.1175/1520-0469(1975)032<0233:TGMAAT>2.0.CO;2

10.1146/annurev.fl.14.010182.001023

Hoskins B. J., 1983, Large‐scale dynamical processes in the atmosphere, 169

10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2

10.1175/1520-0469(1977)034<1859:TFOAMA>2.0.CO;2

Hoskins B. J., 1978, A new look at the ω‐equation, Quart. J. R. Met. Soc., 104, 31

10.1175/1520-0469(1979)036<1663:BWAFPI>2.0.CO;2

10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2

Hoskins B. J.andMcIntyre M. E.1985On the role of nonlinear radiation wave propagation and wave breaking in the life cycles of nonlinear baroclinic instabilities. to be published; preprints available from DAMTP Cambridge

10.1175/1520-0469(1980)037<2768:APMDAN>2.0.CO;2

10.1175/1520-0469(1984)041<3518:ADSOTP>2.0.CO;2

10.1175/1520-0469(1983)040<2232:OTIOEF>2.0.CO;2

10.1007/978-94-009-6390-0_17

10.1029/JZ071i013p03201

10.1175/1520-0493(1982)110<0471:ADSOUT>2.0.CO;2

10.1029/JC090iC05p08845

Keyser D., 1985, A review of the structure and dynamics of upper‐level frontal zones, Mon. Wea. Rev.

10.1017/S0022112085003019

Kleinschmidt E., 1950, Über Aufbau und Entstehung von Zyklonen (1. Teil), Met. Runds., 3, 1

1950, Über Aufbau und Entstehung von Zyklonen (2. Teil), Met. Runds., 3, 54

1951, Über Aufbau und Entstehung von Zyklonen (3. Teil), Met. Runds., 4, 89

10.1111/j.2153-3490.1955.tb01143.x

1957, In ‘Dynamic meteorology’ by Eliassen, A. and Kleinschmidt, E, Handbuch der Physik, 48, 112

Krishnamurti T. N.1975‘Lectures in tropical meteorology’. Florida State Univ. Report No. 75‐8

10.1175/1520-0469(1980)037<0958:NNMIAQ>2.0.CO;2

10.1175/1520-0469(1985)042<0230:TOOITM>2.0.CO;2

10.1175/1520-0469(1978)035<0003:WGAFC>2.0.CO;2

10.1175/1520-0469(1984)041<3333:AOSOTI>2.0.CO;2

Lighthill M. J., 1963, Laminar boundary layers, 55

10.1175/1520-0493(1966)094<0295:OTTOTD>2.3.CO;2

10.1175/1520-0469(1982)039<1171:ANOTLO>2.0.CO;2

10.1175/1520-0485(1982)012<1417:NAPVAI>2.0.CO;2

10.1017/S0022112070000174

10.1002/qj.49709841513

10.1098/rsta.1980.0160

10.2151/jmsj1965.60.1_37

10.1175/1520-0469(1978)035<1190:ORIARO>2.0.CO;2

10.1038/305593a0

10.1016/0021-9169(84)90063-1

10.1007/BF02247786

1979, Structure and interpretation of blocking anticyclones as simulated in a GFDL general circulation model. In ‘Proceedings of the Thirteenth Stanstead Seminar’ (T. Warn, ed.) McGill Univ, Publ. in Met., 123, 70

10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2

10.1029/RG002i001p00155

10.1002/qj.49711046612

Namias J., 1940, An introduction to the study of air‐mass and isentropic analysis, 136

1983, The history of polar front and air mass concepts in the United States—an eyewitness account, Bull. Amer. Met. Soc., 64, 734

Obukhov A. M., 1964, Adiabatic invariants of atmospheric processes, Meteorologiya i gidrologiya, 2, 3

Ishlinskii A. Yu., 1984, N. E. Kochin and the development of mechanics, 84

10.1175/1520-0469(1982)039<2773:SOTCFO>2.0.CO;2

Orr W. M'F., 1907, The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Parts I and II, Proc. Roy. Irish Acad., 27, 9

10.1175/1520-0469(1948)005<0220:ASOTMW>2.0.CO;2

1969, Atmospheric circulation systems

Pedgley D. E., 1962, A course in elementary meteorology

10.1175/1520-0469(1964)021<0201:TSOCIT>2.0.CO;2

Peltonen T., 1963, A case study of an intense upper cyclone over eastern and northern Europe in November 1959, Geophysica (Helsinki), 8, 225

10.1002/qj.49709741407

10.1111/j.2153-3490.1949.tb01266.x

Prandtl L., 1931, Hydro‐ und Aeromechanik

10.1017/S0022112080002546

10.1175/1520-0469(1985)042<1172:AOSOMS>2.0.CO;2

10.1175/1520-0469(1955)012<0226:ASOACT>2.0.CO;2

10.1175/1520-0469(1953)010<0338:AIOTDO>2.0.CO;2

Reed R. J., 1959, Fronts in the vicinity of the tropopause, Arch. Met. Geophys. Biokl., 11, 1

10.1029/JZ070i018p04501

10.1080/03091927009365776

10.1146/annurev.fl.11.010179.002153

10.1080/03091928508219265

Robertson A. W.1984‘Ertel potential vorticity as a tropospheric variable’. Ph.D. thesis University of Reading

10.1007/978-3-642-69003-7

10.1029/TR018i001p00130-2

1937, Isentropic analysis, Bull. Am. Met. Soc., 18, 201, 10.1175/1520-0477-18.6-7.201

1938, On temperature changes in the stratosphere resulting from shrinking and stretching, Beitr. Phys. Freien Atmos., 24, 53

10.1357/002224039806649023

1940, Planetary flow patterns in the atmosphere, Quart. J. R. Met. Soc., 66, 68, 10.1002/j.1477-870X.1940.tb00130.x

10.1017/S0022112081001511

Saffman P. G., 1979, Vortex interaction, Ann Rev. Fluid Mech., 132, 431

10.1175/1520-0469(1979)036<0390:AIASCH>2.0.CO;2

10.1175/1520-0493(1984)112<0031:TPDCOF>2.0.CO;2

10.1175/1520-0493(1985)113<0962:TPDCOF>2.0.CO;2

Vaughan G.andTuck A. F.1985‘Aircraft measurements near jet streams’ in ‘Atmospheric Ozone’ (Proc. Quadrennial ozone symposium IAMAP‐WMO) (C. S. Zerefos and A. Ghazi eds.) Dordrecht Reidel.572–579

10.1002/sapm197859137

10.1175/1520-0469(1984)041<0453:GRISVA>2.0.CO;2

Woods J. D. Leach H.andFischer J.1985Mapping the components of isopycnic potential vorticity in the seasonal thermocline. to be published; preprint available from Institut für Meereskunde U. of Kiel F.R.G.

Young M. V., 1985, Interaction of a baroclinic leaf cloud and dry intrusion in a developing cyclone