Về việc sử dụng khoảng cách Hausdorff trung bình để đánh giá hiệu suất phân đoạn: lỗi ẩn khi được sử dụng để xếp hạng
Tóm tắt
Từ khóa
Tài liệu tham khảo
AlBadawy EA, Saha A, Mazurowski MA (2018) Deep learning for segmentation of brain tumors: impact of cross-institutional training and testing. Med Phys 45:1150–1158 https://doi.org/10.1002/mp.12752. https://doi.org/10.1016/j.neuroimage.2006.01.015
Livne M, Rieger J, Aydin OU et al (2019) A u-net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease. Front Neurosci 13 https://doi.org/10.3389/fnins.2019.00097
Hilbert A, Madai VI, Akay EM et al (2020) BRAVE-NET: fully automated arterial brain vessel segmentation in patients with cerebrovascular disease. Front Artif Intell 3 https://doi.org/10.3389/frai.2020.552258
Powell KA, Liang T, Hittle B, Stredney D, Kerwin T, Wiet GJ (2017) Atlas-based segmentation of temporal bone anatomy. Int J Comput Assist Radiol Surg 12:1937–1944 https://doi.org/10.1007/s11548-017-1658-6
Guenette JP, Ben-Shlomo N, Jayender J et al (2019) MR imaging of the extracranial facial nerve with the CISS sequence. AJNR Am J Neuroradiol 40:1954–1959 https://doi.org/10.3174/ajnr.A6261
Peltenburg B, Schakel T, Dankbaar JW et al (2017) PO-0899: tumor volume delineation using non-EPI diffusion weighted MRI and FDG-PET in head-and-neck patients. Radiother Oncol 123:S496–S497 https://doi.org/10.1016/S0167-8140(17)31336-1
Rizzetto F, Calderoni F, De Mattia C et al (2020) Impact of inter-reader contouring variability on textural radiomics of colorectal liver metastases. Eur Radiol Exp 4:62 https://doi.org/10.1186/s41747-020-00189-8
Liechti MR, Muehlematter UJ, Schneider AF et al (2020) Manual prostate cancer segmentation in MRI: interreader agreement and volumetric correlation with transperineal template core needle biopsy. Eur Radiol 30:4806–4815 https://doi.org/10.1007/s00330-020-06786-w
Chen C, Wang Y, Yu J, Zhou Z, Shen L, Chen Y (2012) Tracking pylorus in ultrasonic image sequences with edge-based optical flow. IEEE Trans Med Imaging 31:843–855 https://doi.org/10.1109/TMI.2012.2183884
Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15. https://doi.org/10.1186/s12880-015-0068-x
Hotter B, Pittl S, Ebinger M et al (2009) Prospective study on the mismatch concept in acute stroke patients within the first 24 h after symptom onset - 1000Plus study. BMC Neurol 9:60 https://doi.org/10.1186/1471-2377-9-60