On the uniqueness of Nash equilibrium in discontinuous ordinal and normal form games

Vincenzo Scalzo1
1Department of Economics and Statistics (DISES), University of Naples Federico II, Napoli, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Belhaj, M., Bramoullé, Y., Deroïan, F.: Network games under strategic complementarities. Games Econ. Behav. 88, 310–319 (2014)

Ceparano, M.C., Quartieri, F.: Nash equilibrium uniqueness in nice games with isotone best replies. J. Math. Econ. 70, 154–165 (2017)

Chenault, L.A.: On the uniqueness of Nash equilibria. Econ. Lett. 20, 203–205 (1986)

Christensen, F.: A necessary and sufficient condition for a unique maximum with an application to potential games. Econ. Lett. 161, 120–123 (2017)

Fan, K.: A minimax inequality and applications. In: Shisha, O. (ed.) Inequalities, vol. 3. Academic Press, New York (1972)

John, R.: Variational inequalities and pseudomonotone functions: some characterizations. In: Crouzeix, J.P., et al. (eds.) Generalized Convexity, Generalized Monotonicity. Kluwer Academic Publishers, Dordrecht (1998)

Nessah, R., Tian, G.: On the existence of Nash equilibrium in discontinuous games. Econ. Theory 61, 515–540 (2016)

Reny, P.J.: Further results on the existence of Nash equilibria in discontinuous games. https://sites.google.com/site/philipjreny/further-results-05-30-09 (2009)

Rosen, J.B.: Existence and uniqueness of equilibrium points for concave N-person games. Econometrica 33, 520–534 (1965)

Scalzo, V.: Continuity properties of the Nash equilibrium correspondence inadiscontinuous setting. J. Math. Anal. Appl. 473, 1270–1279 (2019a)

Scalzo, V.: Equilibrium existence in games: slight single deviation property and Ky Fan minimax inequality. J. Math. Econ. 82, 197–201 (2019b)