On the topological mass lattice groups

Positivity - Tập 23 - Trang 811-827 - 2019
M. Pourgholamhossein1, M. A. Ranjbar1
1Department of Mathematics Faculty of Sciences, University of Qom, Qom, Iran

Tóm tắt

Let G to be a torsion free abelian group. In this paper we introduce the following concepts: Some interesting results about unital lattice groups and Riesz spaces with the chief link topology on them have been presented.

Tài liệu tham khảo

Aliprantis, C.D., Burkinshaw, O.: Locally Solid Riesz Spaces with Applications to Economics, 2nd edn. American Mathematics Society, Providence (2003) Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematics Society, Providence (1967) Boccuto, A., Dimitriou, X.: Convergence Theorems for Lattice Group-Valued Measures. Bentham Science Publishers Ltd, Sharjah (2015) Cernak, S., Lihova, J.: Convergence with a regulator in lattice ordered groups. Tatra Mt. Math. Publ. 39, 35–45 (2005) Cernak, S.: Convergence with a fixed regulator in Archimedean lattice ordered groups. Math. Slovaca 56(2), 167–180 (2006) Foulis, D.J.: Removing the torsion from a unital group. Rep. Math. Phys. 52(2), 187–203 (2003) Foulis, D.J.: Compressions on partially ordered abelian groups. Proc. Am. Math. Soc. 132(12), 3581–3587 (2004) Foulis, D.J., Pulmannova, S.: Monotone \(\sigma \)-complete RC-groups. J. Lond. Math. Soc. (2) 73, 304–324 (2006) Goodearl, K.R.: Partially Ordered Abelian Groups with Interpolation. AMS Mathematical Surveys and Monographs, No. 20. American Mathematical Society, Providence (1986) Gusic, I.: A topology on lattice-ordered groups. Proc. Am. Math. Soc. 126(9), 2593–2597 (1998) Hungerford, T.W.: Algebra. Springer, New York (1974) Knapp, A.W.: Basic Real Analysis. Birkhauser, Boston (2005) Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces I. North-Holland, Amsterdam (1971) Pulmannova, S.: Effect algebras with the Riesz decomposition property and AF C*algebras. Found. Phys. 29, 1389–1401 (1999) Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics, 2nd edn. McGraw-Hill, New York (1991) Vulikh, B.Z.: Introduction to the Theory of Partially Ordered Spaces. Wolters-Noordhoff Scientific Publications LTD, Groningen (1967) (translated from Russian by L.F. Boron)