On the three-dimensional spatial correlations of curved dislocation systems
Tóm tắt
Coarse-grained descriptions of dislocation motion in crystalline metals inherently represent a loss of information regarding dislocation-dislocation interactions. In the present work, we consider a coarse-graining framework capable of re-capturing these interactions by means of the dislocation-dislocation correlation functions. The framework depends on a convolution length to define slip-system-specific dislocation densities. Following a statistical definition of this coarse-graining process, we define a spatial correlation function which will allow the arrangement of the discrete line system at two points—and thus the strength of their interactions at short range—to be recaptured into a mean field description of dislocation dynamics. Through a statistical homogeneity argument, we present a method of evaluating this correlation function from discrete dislocation dynamics simulations. Finally, results of this evaluation are shown in the form of the correlation of dislocation densities on the same slip-system. These correlation functions are seen to depend weakly on plastic strain, and in turn, the dislocation density, but are seen to depend strongly on the convolution length. Implications of these correlation functions in regard to continuum dislocation dynamics as well as future directions of investigation are also discussed.
Tài liệu tham khảo
K. -H. Anthony, A. Azirhi, Lagrangian field theory of plasticity and dislocation dynamics Attempts towards unification with thermodynamics of irreversible processes. Arch. Mech.50(3), 345–365 (1998).
M. Bao-Tong, C. Laird, Overview of fatigue behavior in copper single crystals-I. Surface morphology and stage I crack initiation sites for tests at constant strain amplitude. Acta Metall.37(2), 325–336 (1989). https://doi.org/10.1016/0001-6160(89)90217-4.
N. Bertin, Connecting discrete and continuum dislocation mechanics: A non-singular spectral framework. Int. J. Plast.122:, 268–284 (2019).
C. K. Birdsall, D. Fuss, Clouds-in-clouds, clouds-in-cells physics for many-body plasma simulation. J. Comput. Phys.3(4), 494–511 (1969). https://doi.org/10.1016/0021-9991(69)90058-8.
F. F. Csikor, I. Groma, T. Hochrainer, D. Weygand, M. Zaiser, in Proceedings of the 11th International Symposium on Continuum Models and Discrete Systems. On the range of 3D dislocation pair correlations, (2008), pp. 271–276. Mines ParisTech Les Presses. http://arxiv.org/abs/0812.0918.
J. Deng, A. El-Azab, Dislocation pair correlations from dislocation dynamics simulations. J. Computer-Aided Mater. Des.14(SUPPL. 1), 295–307 (2007). https://doi.org/10.1007/s10820-008-9090-4.
B. Devincre, R. Madec, G. Monnet, S. Queyreau, R. Gatti, L. Kubin, in Mechanics of Nano-Objects. Modeling CrystalPlasticity with Dislocation Dynamics Simulations: The ’microMegas’ Code, (2011), pp. 81–99. https://www.researchgate.net/publication/258242158.
R. Durrett, Probability: Theory and Examples, 5th ed (Cambridge University Press, 2019).
A. El-Azab, G. Po, in Handbook of Materials Modeling. Continuum Dislocation Dynamics: Classical Theory and Contemporary Models, (2018), pp. 1–25. https://doi.org/10.1007/978-3-319-42913-7_1.
I. Groma, Link between the microscopic and mesoscopic length-scale description of the collective behavior of dislocations. Phys Rev B. 56(10), 5807–5813 (1997). https://doi.org/10.1103/PhysRevB.56.5807.
I. Groma, P. Balogh, Investigation of dislocation pattern formation in a two-dimensional self-consistent field approximation. Acta Mater.47(13), 3647–3654 (1999). https://doi.org/10.1016/S1359-6454(99)00215-3.
I. Groma, F. F. Csikor, M. Zaiser, Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater.51(5), 1271–1281 (2003). https://doi.org/10.1016/S1359-6454(02)00517-7.
I. Groma, G. Györgyi, B. Kocsis, Debye screening of dislocations. Phys. Rev. Lett.96(16), 165503 (2006). https://doi.org/10.1103/PhysRevLett.96.165503.
A. N. Gulluoglu, D. J. Srolovitz, R. Lesar, P. S. Lomdahl, Dislocation Distributions in Two Dimensions. Scr. Metall.23:, 1347–1352 (1988).
D. R. Hartree, The wave mechanics of an atom with a non-coulomb central field: Part i theory and methods. Math. Proc. Camb. Philos. Soc.24(1), 89–110 (1928). https://doi.org/10.1017/S0305004100011919.
Hirth, Lothe, Theory of Dislocations (Wiley, New York, 1982).
T. Hochrainer, Evolving systems of curved dislocations: mathematical foundations of a statistical theory. PhD thesis, Karlsruhe Institute of Technology (2007). https://doi.org/10.13140/RG.2.1.1630.6407.
T. Hochrainer, Multipole expansion of continuum dislocations dynamics in terms of alignment tensors. Phil. Mag.95(12), 1321–1367 (2015). https://doi.org/10.1080/14786435.2015.1026297.
T. Hochrainer, S. Sandfeld, M. Zaiser, P. Gumbsch, Continuum dislocation dynamics: Towards a physical theory of crystal plasticity. J. Mech. Phys. Solids. 63:, 167–178 (2014). https://doi.org/10.1016/J.JMPS.2013.09.012.
M. Kooiman, M. Hütter, M. Geers, Effective mobility of dislocations from systematic coarse-graining. J. Stat. Mech. Theory Exp.2015(6), 06005 (2015). https://doi.org/10.1088/1742-5468/2015/06/P06005.
E. Kröner, Benefits and shortcomings of the continuous theory of dislocations. Int. J. Solids Struct.38(6-7), 1115–1134 (2001). https://doi.org/10.1016/S0020-7683(00)00077-9.
P. Li, S. X. Li, Z. G. Wang, Z. F. Zhang, Unified factor controlling the dislocation evolution of fatigued face-centered cubic crystals. Acta Mater.129:, 98–111 (2017). https://doi.org/10.1016/j.actamat.2017.02.057.
S. Limkumnerd, E. Van Der Giessen, Statistical approach to dislocation dynamics: From dislocation correlations to a multiple-slip continuum theory of plasticity. Phys Rev B. 77(18) (2008). https://doi.org/10.1103/PhysRevB.77.184111.
P. Lin, A. El-Azab, Implementation of annihilation and junction reactions in vector density-based continuum dislocation dynamics. Model. Simul. Mater. Sci. Eng.28(4), 045003 (2020). https://doi.org/10.1088/1361-651X/ab7d90.
R. Lesar, J. M. Rickman, Incorporation of local structure in continuous dislocation theory. Phys Rev B. 69(17), 172105–2004 (2004). https://doi.org/10.1103/PhysRevB.69.172105.
D. D. Nolte, The tangled tale of phase space. Phys. Today. 63(4), 33–38 (2010).
H. C. Öttinger, Beyond Equilibrium Thermodynamics (Wiley, Hoboken, 2005a).
H. C. Öttinger, in Beyond Equilibrium Thermodynamics, Chap. 6. Projection Operator Method (WileyHoboken, 2005b), pp. 213–260.
J. M. Rickman, R. Lesar, Issues in the coarse-graining of dislocation energetics and dynamics. Scr. Mater.54(5), 735–739 (2006). https://doi.org/10.1016/j.scriptamat.2005.11.030.
S. Sandfeld, The Evolution of Dislocation Density in a Higher-order Continuum Theory of Dislocation Plasticity. PhD thesis, University of Edinburgh (2010).
S. Sandfeld, G. Po, Microstructural comparison of the kinematics of discrete and continuum dislocations models. Model. Simul. Mater. Sci. Eng.23(8), 083003 (2015). https://doi.org/10.1088/0965-0393/23/8/085003.
M. Sauzay, L. P. Kubin, Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals. Prog. Mater. Sci.56:, 725–784 (2011). https://doi.org/10.1016/j.pmatsci.2011.01.006.
K. Starkey, G. Winther, A. El-Azab, Theoretical development of continuum dislocation dynamics for finite-deformation crystal plasticity at the mesoscale. J. Mech. Phys. Solids. 139:, 103926 (2020). https://doi.org/10.1016/j.jmps.2020.103926.
H. Stoyan, D. Stoyan, Simple stochastic models for the analysis of dislocation distributions. Phys. Status Solidi (a). 97(1), 163–172 (1986). https://doi.org/10.1002/pssa.2210970114.
P. -L. Valdenaire, Y. Le Bouar, B. Appolaire, A. Finel, Density-based crystal plasticity: From the discrete to the continuum. Phys. Rev. B. 93:, 214111 (2016). https://doi.org/10.1103/PhysRevB.93.214111.
H. Y. Wang, R. Lesar, J. M. Rickman, Analysis of dislocation microstructures: Impact of force truncation and slip systems. Phil. Mag. A. 78(6), 1195–1213 (1997). https://doi.org/10.1080/01418619808239983.
S. Xia, Continuum Dislocation Dynamics Modelling of the Deformation of FCC Single Crystals (Phd, Purdue University, 2016).
S. X. Xia, A. El-Azab, in IOP Conference Series: Materials Science and Engineering, vol. 89. A preliminary investigation of dislocation cell structure formation in metals using continuum dislocation dynamics, (2015a), p. 012053. https://doi.org/10.1088/1757-899X/89/1/012053.
S. Xia, A. El-Azab, Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals. Model. Simul. Mater. Sci. Eng.23:, 055009 (2015b). https://doi.org/10.1088/0965-0393/23/5/055009.
M. Zaiser, Local density approximation for the energy functional of three-dimensional dislocation systems. Phys Rev B. 92(17), 174120 (2015). https://doi.org/10.1103/PhysRevB.92.174120.
M. Zaiser, M. C. Miguel, I. Groma, Statistical dynamics of dislocation systems: The influence of dislocation-dislocation correlations. Phys. Rev. B. 64(22), 2241021–2241029 (2001). https://doi.org/10.1103/PhysRevB.64.224102.