On the theory of harmonic functions of several variables: I. The theory of Hp-spaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bochner, S.,Harmonic Analysis and the Theory of Probability. Berkeley, University of California Press (1955).
Calderón, A. P., On the behaviour of harmonic functions at the boundary.Trans Amer. Math. Soc., 68 (1950), 47–54.
Helson, H. &Lowdenslager, D., Prediction theory and Fourier series in several variables.Acta Math., 99 (1958), 165–202.
Hille, E. &Tamarkin, J. D., On the absolute integrability of Fourier transforms.Fund. Math., 25 (1935), 329–352.
Horváth, J., Sur les fonctions conjuguées à plusieurs variables.Kon. Med. Acad. van Wet., 16 (1953), 17–29.
Kryloff, W., On functions analytic in the half-plane (Russian).Math. Sbornik T. 6 (48) (1939), 55–138.
Rauch, H. E., Harmonic and analytic functions of several variables and the maximal theorem of Hardy and Littlewood.Can. J. Math. Vol. 8 (1956), 171–183.
Saks, S.,Theory of the Integral. New York, G. E. Stechert & Co. (1937).
Smith, K. T., A generalization of an inequality of Hardy and Littlewood.Can. J. Math., 8 (1956), 157–170.
Soboleff, S., On a theorem in functional analysis (Russian),Doklady Akad. Nauk U.S.S.R. 20 (1938), p. 5.
Titchmarsh, E. C.,The Theory of Functions. Oxford University Press (1928).
Titchmarsh, E. C.,Introduction to the Theory of Fourier Integrals. Oxford University Press (1937).
Weiss, G., A note on Orlicz spaces.Port. Math., 15 (1956), 35–47.
Zygmund, A.,Trigonometric Series. Cambridge University Press (1959).