On the theory of harmonic functions of several variables: I. The theory of Hp-spaces

Elias M. Stein1,2, Guido Weiss2,1
1University of Chicago
2De Paul University

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bochner, S.,Harmonic Analysis and the Theory of Probability. Berkeley, University of California Press (1955).

Calderón, A. P., On the behaviour of harmonic functions at the boundary.Trans Amer. Math. Soc., 68 (1950), 47–54.

Calderón, A. P. &Zygmund, A., On singular integrals.Amer. J. Math., 78 (1956), 289–309.

Helson, H. &Lowdenslager, D., Prediction theory and Fourier series in several variables.Acta Math., 99 (1958), 165–202.

Hille, E. &Tamarkin, J. D., On the absolute integrability of Fourier transforms.Fund. Math., 25 (1935), 329–352.

Horváth, J., Sur les fonctions conjuguées à plusieurs variables.Kon. Med. Acad. van Wet., 16 (1953), 17–29.

Kryloff, W., On functions analytic in the half-plane (Russian).Math. Sbornik T. 6 (48) (1939), 55–138.

Radó, T.,Subharmonic functions. Berlin, J. Springer (1937).

Rauch, H. E., Harmonic and analytic functions of several variables and the maximal theorem of Hardy and Littlewood.Can. J. Math. Vol. 8 (1956), 171–183.

Riezs, M., L'integral de Riemann-Liouville et le problème de Couchy.Acta Math., 81 (1949), 1–223.

Saks, S.,Theory of the Integral. New York, G. E. Stechert & Co. (1937).

Smith, K. T., A generalization of an inequality of Hardy and Littlewood.Can. J. Math., 8 (1956), 157–170.

Soboleff, S., On a theorem in functional analysis (Russian),Doklady Akad. Nauk U.S.S.R. 20 (1938), p. 5.

Titchmarsh, E. C.,The Theory of Functions. Oxford University Press (1928).

Titchmarsh, E. C.,Introduction to the Theory of Fourier Integrals. Oxford University Press (1937).

Weiss, G., A note on Orlicz spaces.Port. Math., 15 (1956), 35–47.

Wiener, N., The Ergodic theorem.Duke Math. J., 5 (1939), 1–18.

Zygmund, A.,Trigonometric Series. Cambridge University Press (1959).

— On the boundary values of functions of several complex variables, I.Fund. Math., 36 (1949), 207–235.