On the sustainability of smart and smarter cities in the era of big data: an interdisciplinary and transdisciplinary literature review
Tóm tắt
There has recently been a conscious push for cities across the globe to be smart and even smarter and thus more sustainable by developing and implementing big data technologies and their applications across various urban domains in the hopes of reaching the required level of sustainability and improving the living standard of citizens. Having gained momentum and traction as a promising response to the needed transition towards sustainability and to the challenges of urbanisation, smart and smarter cities as approaches to data-driven urbanism are increasingly adopting the advanced forms of ICT to improve their performance in line with the goals of sustainable development and the requirements of urban growth. One of such forms that has tremendous potential to enhance urban operations, functions, services, designs, strategies, and policies in this direction is big data analytics and its application. This is due to the kind of well-informed decision-making and enhanced insights enabled by big data computing in the form of applied intelligence. However, topical studies on big data technologies and their applications in the context of smart and smarter cities tend to deal largely with economic growth and the quality of life in terms of service efficiency and betterment while overlooking and barely exploring the untapped potential of such applications for advancing sustainability. In fact, smart and smarter cities raise several issues and involve significant challenges when it comes to their development and implementation in the context of sustainability. With that in regard, this paper provides a comprehensive, state-of-the-art review and synthesis of the field of smart and smarter cities in relation to sustainability and related big data analytics and its application in terms of the underlying foundations and assumptions, research issues and debates, opportunities and benefits, technological developments, emerging trends, future practices, and challenges and open issues. This study shows that smart and smarter cities are associated with misunderstanding and deficiencies as regards their incorporation of, and contribution to, sustainability. Nevertheless, as also revealed by this study, tremendous opportunities are available for utilising big data analytics and its application in smart cities of the future to improve their contribution to the goals of sustainable development by optimising and enhancing urban operations, functions, services, designs, strategies, and policies, as well as by finding answers to challenging analytical questions and thereby advancing knowledge forms. However, just as there are immense opportunities ahead to embrace and exploit, there are enormous challenges and open issues ahead to address and overcome in order to achieve a successful implementation of big data technology and its novel applications in such cities.
Tài liệu tham khảo
Ahmed E, Yaqoob I, Hashem IAT, Khan I, Ahmed AIA, Imran M, Vasilakos AV. The role of big data analytics in Internet of Things. J Comp Net. 2018;129:459–71.
Ahvenniemi H, Huovila A, Pinto-Seppä I, Airaksinen M. What are the differences between sustainable and smart cities? Cities. 2017;60:234–45.
Albino V, Berardi U, Dangelico R. Smart cities: definitions, dimensions, performance, and initiatives. J Urban Technol. 2015;22(1):3–21.
Al-Nasrawi S, Adams C, El-Zaart A. A conceptual multidimensional model for assessing smart sustainable cities. J Inf Syst Technol Manag. 2015;12(3):541–58.
Al Nuaimi E, Al Neyadi H, Nader M, Al-Jaroodi J. Applications of big data to smart cities. J Internet Serv Appl. 2015;6(25):1–15.
Angelidou M, Artemis P, Nicos K, Christina K, Tsarchopoulos P, Anastasia P. Enhancing sustainable urban development through smart city applications. J Sci Technol Policy Manag. 2017;9:1–25.
Angelidou M. Smart city policies: a spatial approach. Cities. 2014;41(S1):S3–11.
Angelidou M. Smart cities: a conjuncture of four forces. Cities. 2015;47:95–106.
Angelidou M. The role of smart city characteristics in the plans of fifteen cities. J Urb Technol. 2017;24(4):3–28.
Anthopoulos L. Understanding smart cities—a tool for smart government or an industrial trick? Public Administration and Information Technology, vol. 22. New York: Springer; 2017.
Bahga A, Madisetti V. Big bata science and analytics: a hands-on approach. Berlin: VPT; 2016.
Batty M. Technology highs. Guardian. 1989;22:29.
Batty M. Environment and Planning B. 1990;17:247.
Batty M. The computable city. Int Plann Studies. 1997;2:155.
Batty M. Big data, smart cities and city planning. Dialogues Hum Geog. 2013;3(3):274–9.
Batty M, Axhausen KW, Giannotti F, Pozdnoukhov A, Bazzani A, Wachowicz M, Ouzounis G, Portugali Y. Smart cities of the future. Eur Phys J. 2012;214:481–518.
Belanche D, Casaló L, Orús C. City attachment and use of urban services: benefits for smart cities. Cities. 2016;50:75–81.
Bettencourt LMA. The uses of big data in cities Santa Fe Institute. New Mexico: Santa Fe; 2014.
Bibri SE. The shaping of ambient intelligence and the internet of things: historico-epistemic, socio-cultural, politico-institutional and eco-environmental dimensions. Berlin: Springer; 2015.
Bibri SE. Smart sustainable cities of the future: the untapped potential of big data analytics and context aware computing for advancing sustainability. Germany, Berlin: Springer; 2018.
Bibri SE. The IoT for smart sustainable cities of the future: an analytical framework for sensor-based big data applications for environmental sustainability. Sustain Cities Soc. 2018;38:230–53.
Bibri SE. A foundational framework for smart sustainable city development: theoretical, disciplinary, and discursive dimensions and their synergies. Sustain Cities Soc. 2018;38:758–94.
Bibri SE. Big Data science and analytics for smart sustainable urbanism: unprecedented paradigmatic shifts and practical advances. Germany, Berlin: Springer; 2019.
Bibri SE, Krogstie J. On the social shaping dimensions of smart sustainable cities: a study in science, technology, and society. Sustain Cities Soc. 2016;29:219–46.
Bibri SE, Krogstie J. Smart sustainable cities of the future: an extensive interdisciplinary literature review. Sustain Cities Soc. 2017;31:183–212.
Bibri SE, Krogstie J. ICT of the new wave of computing for sustainable urban forms: their big data and context-aware augmented typologies and design concepts. Sustain Cities Soc. 2017;32:449–74.
Bibri SE, Krogstie J. The core enabling technologies of big data analytics and context-aware computing for smart sustainable cities: a review and synthesis. J Big Big Data. 2017;4(38):1–50.
Bifulco F, Tregua M, Amitrano CC, D’Auria A. ICT and sustainability in smart cities management. Int J Pub Sec Manag. 2016;29(2):132–47.
Castán JA, Martínez SI, Menchaca JL, Berrones MGT. Improving vehicular mobility in urban traffic using ubiquitous computing. J Comput Commun. 2016;4:57–62. https://doi.org/10.4236/jcc.2016.410006.
Caragliu A, Del Bo C, Nijkamp P. ‘Smart cities in Europe’ (series research memoranda 0048). Amsterdam: VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics; 2009.
Carrasco-Sáez JL, Careaga Butter M, Badilla-Quintana MG. The new pyramid of needs for the digital citizen: a transition towards smart human cities. Sustainability. 2017;9:2258.
Chaminade C, Edquist C. Inside the public scientific system: changing modes of knowledge production. In: Smits R, Shapira P, Kehlmann S, editors. The theory and practice of innovation policy: an international research handbook. Cheltenham: Edward Elgar; 2010. p. 95–114.
Chen H, Chiang RHL, Storey VC. Business intelligence and analytics: from big data to big impact. MIS Q. 2012;36(4):1165–88.
Chen M, Mao S, Liu Y. Big data: a survey. Mob Networks Appl. 2014;19(2):171–209.
Chen F, Deng P, Wan J, Zhang D, Vasilakos AV, Rong X. Data mining for the internet of things: literature review and challenges. Int J Distrib Sens Networks. 2015;501(431047):1–14.
Chourabi H, Nam T, Walker S, Gil-Garcia JR, Mellouli S, Nahon K, Pardo TA, Scholl HJ. Understanding smart cities: an integrative framework. The 245th Hawaii international conference on system science (HICSS). Maui: HI; 2012. p. 2289–97.
Colldahl C, Frey S, Kelemen JE. Smart cities: strategic sustainable development for an urban world. Master thesis, School of Engineering, Blekinge Institute of Technology. 2013.
Dameri R, Cocchia A. Smart city and digital city: twenty years of terminology evolution. In: X Conference of the Italian chapter of AIS, ITAIS 2013, Università Commerciale Luigi Bocconi, Milan (Italy). 2013, p. 18.
David D. Environment and urbanization. Int Encyclop Geogr. 2017;24(1):31–46. https://doi.org/10.1002/9781118786352.wbieg0623.
Degbelo A, Granell Granell C, Trilles Oliver S, Bhattacharya D, Casteleyn S, Kray C. Opening up smart cities: citizen-centric challenges and opportunities from GIScience. ISPRS Int J Geo-Inf. 2016;5(2):16. https://doi.org/10.3390/ijgi5020016.
DeRen L, JianJun C, Yuan Y. Big data in smart cities. Sci China Inf Sci. 2015;58:1–12.
Dumreicher H, Levine RS, Yanarella EJ. The appropriate scale for “low energy”: theory and practice at the Westbahnhof. In: Steemers K, Yannas S, editors. Architecture, city, environment, proceedings of PLEA 2000. London: James & James; 2000. p. 359–63.
Dutton WH, Blumler JG, Kraemer KL. Wired cities: shaping future communication. New York: Macmillan; 1987.
Erdmann L, Hilty LM (2010) Scenario analysis exploring the macroeconomic impacts of information and communication technologies on greenhouse gas emissions. J Ind Ecol 14(5):826.
Ersue M, Romascanu D, Schoenwaelder J, Sehgal A. Management of networks with constrained devices: use cases. IETF Internet. 2014.
Estevez E, Lopes NV, Janowski T. Smart sustainable cities. Reconn Study. 2016;1:330.
European Commission. Communication from the Commission EUROPE 2020. In: A strategy for smart, sustainable and inclusive growth. Com (2010) 2020, Brussels (3 March), Commission of the European Communities. 2010. https://doi.org/10.1016/j.resconrec.2010.03.010.
European Commission. Cities of tomorrow. Challenges, visions, ways forward. Publications Office of the European Union, Brussels. 2011.
Fan W, Bifet A. Mining big data: current status, and forecast to the future. ACM SIGKDD Explor Newsl. 2013;14(2):1–5.
Foucault M. The archaeology of knowledge. London: Routledge; 1972.
Gebresselassiea M, Sanchez TM. Smart’ tools for socially sustainable transport. J Urban Sci. 2018;2:45.
Gubbi J, Rajkumar Buyya, Slaven Marusic, Marimuthu Palaniswami. Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener Comput Syst. 2013;29(7):1645–60.
Han J, Meng X, Zhou X, Yi B, Liu M, Xiang W-N. A long-term analysis of urbanization process, landscape change, and carbon sources and sinks: a case study in China’s Yangtze River Delta region. J Cleaner Prod. 2016;141:1040–50. https://doi.org/10.1016/j.jclepro.2016.09.177.
Hashem IAT, Chang V, Anuar NB, Adewole K, Yaqoob I, Gani A, Ahmed E, Chiroma H. The role of big data in smart city. Int J Infor Manag. 2016;36:748–58.
Höjer M, Wangel S. Smart sustainable cities: definition and challenges. In: Hilty L, Aebischer B, editors. ICT innovations for sustainability. Berlin: Springer; 2015. p. 333–49.
Hollands RG. Will the real smart city please stand up? City Anal Urban Trends Cult Theory Policy Action. 2008;12(3):303–20.
Ishida T, Isbister K. Digital cities: technologies, experiences, and future perspectives. Berlin: Springer; 2002.
ISTAG. Ambient intelligence: from vision to reality (for participation—in society and business. 2003. http://www.ideo.co.uk/DTI/CatalIST/istag-ist2003_draft_consolidated_report.pdf. Accessed 23 Oct 2009.
ISTAG. Shaping Europe’s future through ICT. 2006. http://www.cordis.lu/ist/istag.htm. Accessed 22 Mar 2011.
International Telecommunications Union (ITU). Agreed definition of a smart sustainable city. Focus Group on Smart Sustainable Cities, SSC–0146 version Geneva, 5–6 Mar. 2014.
Jimenez CE, Solanas A, Falcone F. E-government interoperability: linking open and smart government. Computer. 2014;47(10):22–4.
Jabareen YR. Sustainable urban forms: their typologies, models, and concepts. J Plann Educ Res. 2006;26:38–52.
Joss S. Eco-cities: the mainstreaming of urban sustainability; key characteristics and driving factors. Int J Sustain Dev Plan. 2011;6(3):268–85.
Joss S, Cowley R, Tomozeiu D. Towards the ubiquitous eco-city: an analysis of the internationalisation of eco-city policy and practice. J Urban Res Pract. 2013;76:16–22.
Jucevicius R, Patašienė I, Patašius M. Digital dimension of smart city: critical analysis. Proc Social Behav Sci. 2014;156:146–50.
Kaisler S, Armour F, Espinosa JA, Money W. Big data: issues and challenges moving forward. In: Proceedings of 46th Hawaii International conference on systems sciences (HICSS). IEEE, Wailea, Maui. 2013, p. 995–1004.
Kärrholm M. The scaling of sustainable urban form: some scale—related problems in the context of a Swedish urban landscape. Eur Plan Stud. 2011;19(1):97–112.
Katal A, Wazid M, Goudar R. Big data: issues, challenges, tools and good practices. In: Proceedings of 6th international conference on contemporary computing (IC3), Noida, August 8–10. IEEE, US. 2013, p. 404–9.
Karun KA, Chitharanjan K. A review on hadoop—HDFS infrastructure extensions. In: IEEE, information and communication technologies (ICT). 2013, p. 132–7.
Kemp R. Environmental policy and technical change: a comparison of the technological impact of policy instruments. Cheltenham: Edward Elgar; 1997.
Kemp R, Rotmans J. The management of the co-evolution of technical, environmental and social systems. In: Weber M, Hemmelskamp J, editors. Towards environmental innovation systems. Berlin: Springer; 2005.
Khan M, Uddin MF, Gupta N. Seven V’s of big data understanding: big data to extract value. In: 2014 zone 1 conference of the IEEE American society for engineering education (ASEE Zone 1). 2014, p. 1–5.
Khan Z, Anjum A, Soomro K, Tahir MA. Towards cloud based big data analytics for smart future cities. J Cloud Comput Adv Syst Appl. 2015;4:2.
Khan Z, Anjum A, Kiani SL. Cloud based big data analytics for smart future cities. In: Proceedings of the 2013 IEEE/ACM 6th international conference on utility and cloud computing, IEEE computer society. 2013, p. 381–6.
Khan Z, Kiani SL. A cloud-based architecture for citizen services in smart cities In: IEEE fifth international conference on utility and cloud computing ITAAC workshop. 2012, p. 315–20. (UCC), Chicago, IL, USA. IEEE.
Khan Z, Kiani SL, Soomro K. A framework for cloud-based context-aware information services for citizens in smart cities. J Cloud Comput Appl Adv Syst Appl. 2014;3(14):1–17.
Khanac Z, Pervaiz Z, Abbasi AG. Towards a secure service provisioning framework in a smart city environment. Future Gener Comput Syst. 2017;77:112–35.
Kharrazi A, Qin H, Zhang Y. Urban big data and sustainable development goals: challenges and opportunities. Sustainability. 2016;8(1293):1–8.
Kitchin R. The real-time city? Big data and smart urbanism. Geo J. 2014;79:1–14.
Kitchin, R. Data-driven, networked urbanism. 2015. https://doi.org/10.2139/ssrn.2641802.
Kitchin R. The ethics of smart cities and urban science. Philos Trans R Soc A. 2016;374:20160115.
Kramers A, Höjer M, Lövehagen N, Wangel J. Smart sustainable cities: exploring ICT solutions for reduced energy use in cities. Environ Model Softw. 2014;56:52–62.
Kumar A, Prakash A. The role of big data and analytics in smart cities. Int J Sci Res. 2014;6(14):12–23.
Kyriazis D, Varvarigou T, Rossi A, White D, Cooper J. Sustainable smart city IoT applications: heat and electricity management and eco-conscious cruise control for public transportation. In: Proceedings of the 2013 IEEE 14th international symposium and workshops on a world of wireless, mobile and multimedia networks (WoWMoM), Madrid, Spain. 2014, p. 1–5 Lane ND.
Lacinák M, Ristvej J. Smart city, safety and security. Proc Eng. 2017;192:522–7.
Laney D. 3–D data management: controlling data volume, velocity and variety. New York: META group research note; 2001.
Levy Y, Ellis TJ. A systems approach to conduct an effective literature review in support of information systems research. Inform Sci J. 2006;9:1–32.
Lombardi P, Giordano S, Caragliu A, Del Bo C, Deakin M, Nijkamp P, Kourtit K. An advanced triple-helix network model for smart cities performance. Amsterdam: Vrije Universiteit, Research Memorandum; 2011. p. 2011–45.
Lytras MD, Aljohani NR, Hussain A, Luo J, Zhang XZ. Cognitive computing track chairs’ welcome & organization. In: Proceedings of the companion of the web conference, Lyon, France. April 2018, p. 23–27.
Malik P. Big data: principles and practices. IBM J Res Dev. 2013;57:4.
Manyika J, Chiu M, Brown B, Bughin J, Dobbs R, Roxburgh C, et al. Big data: the next frontier for innovation, competition, and productivity. New York: McKinsey Global Institute; 2011.
Marsal-Llacuna M-L. City indicators on social sustainability as standardization technologies for smarter (citizen-centered) governance of cities. Soc Indic Res. 2016;128(3):1193–216. https://doi.org/10.1007/s11205-015-1075-6.
Marsal-Llacuna ML, Colomer-Llinàs J, Meléndez-Frigola J. Lessons in urban monitoring taken from sustainable and livable cities to better address the smart cities initiative. Technol Forecast Social Change. 2015;90(2):611–22.
Martínez-Ballesté A, Pérez-Martínez PA, Solanas A. The pursuit of citizens’ privacy: aprivacy-aware smart city is possible. IEEE Commun Mag. 2013;51:136–41.
Marz N, Warren J. Big data: Principles and best practices of scalable realtime data systems. Manning: MEAP edition; 2012.
Mayer-Schonberger V, Cukier K. Big data: A revolution that will change how we live, work and think. London: John Murray; 2013.
McLuhan M. Understanding media: the extensions of man. New York: McGraw Hill; 1964.
Mohamed N, Al-Jaroodi J. Real-time big data analytics: applications and challenges. In: 2014 international conference on high performance computing & simulation (HPCS). 2014, p. 305–310.
Morinière L. Environmentally influenced urbanization: footprints bound for town? Urban Studies. 2012;49(2):435–50.
Murphy J. Ecological modernization. Geoforum. 2000;31:1–8.
Nam T, Pardo TA. Conceptualizing smart city with dimensions of technology, people, and institutions. In: Proceedings of the 12th annual international conference on digital government research. 2011
Neirotti P, De Marco A, Cagliano AC, Mangano G, Scorrano F. Current trends in smart city initiatives—some stylized facts. Cities. 2014;38:25–36.
Neumeyer L, Robbins B, Nair A, Kesari A. S4: distributed stream computing platform. In: ICDM workshops. 2010, p. 170–177.
Pantelis K, Aija L. Understanding the value of (big) data. In: Big data 2013 IEEE international conference on IEEE. 2013, p. 38–42.
Perera C, Zaslavsky A, Christen P, Georgakopoulos D. Sensing as a service model for smart cities supported by internet of things. Trans Emerg Telecommun Technol. 2014;25:1–12.
Piro G, Cianci I, Grieco LA, Boggia G, Camarda P. Information centric services in smart cities. J Syst Softw. 2014;88:169–88.
Provost F, Fawcett T. Data science for business. Sebastopol: O’Reilly Media Inc; 2013.
Rathore MM, Won-HwaHong AP, Seo HC, Awan I, Saeed S. Exploiting IoT and big data analytics: defining smart digital city using real-time urban data. J SSC. 2018;40:600–10.
Rånge M, Sandberg M. Windfall gains or eco-innovation? “Green” evolution in the Swedish innovation system. Soc Environ Econ Policy Stud. 2015;18:1–20.
Santucci G. Privacy in the digital economy: requiem or renaissance? Privacy Surgeon.See. 2013. http://www.privacysurgeon.org/blog/wp–content/uploads/2013/09/Privacy-in-the-Digital-Economy-final.pdf (accessed 12 November 2015).
Scott J. A matter of record. Cambridge: University of Cambridge Press; 1990.
Shahrokni H, Årman L, Lazarevic D, Nilsson A, Brandt N. Implementing smart urban metabolism in the Stockholm Royal Seaport: smart city SRS. J Ind Ecol. 2015;19(5):917–29.
Shepard M, editor. Sentient city: ubiquitous computing, architecture and the future of urban space. Cambridge: MIT Press; 2011.
Shin D. Ubiquitous city: urban technologies, urban infrastructure and urban informatics. J Inf Sci. 2009;35(5):515–26.
Singh J, Singla V. Big data: tools and technologies in big data. Int J Comput Appl. 2015;112(15):0975–8887.
Smith A. Transforming technological regimes for sustainable development: a role for alternative technology niches? Sci Public Policy. 2003;30(2):127–35.
Smolan R, Erwitt J. The human face of big data. New York: Sterling; 2012.
Solove DJ. A taxonomy of privacy. Univ Penn Law Rev. 2006;154:477–560.
Song H, Srinivasan R, Sookoor T, Jeschke S. Smart cities: foundations, principles, and applications. New Jersey: Wiley; 2017.
Strandberg KL. Monitoring, datafication and consent: legal approaches to privacy in the big data context. In: Lane J, Stodden V, Bender S, Nissenbaum H, editors. Privacy, big data and the public good. Cambridge: Cambridge University Press; 2014. p. 5–43.
Su K, Li J, Fu H. Smart city and the applications. In: Electronics, communications and control (ICECC), 2011 international conference on IEEE. 2011, p. 1028–1031.
Taghavi M, Bakhtiyari K, Taghavi H, Olyaee Attar V, Hussain A. Planning for sustainable development in the emerging information societies. J Sci Technol Policy Manage. 2014;5(3):178–211.
Thrift N. The ‘sentient’ city and what it may portend. Big Data Soc. 2014;1:2053951714532241.
Townsend A. Smart cities—big data, civic hackers and the quest for a new utopia. New York: Norton & Company; 2013.
Tsai CW, Lai CF, Chao HC, Vasilakos AV. Big data analytics: a survey. J Big Data. 2015;21:2.
United Nations. World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352). New York, United States of America. 2014. https://doi.org/10.4054/DemRes.2005.12.9.
United Nations. Transforming our world: the 2030 agenda for sustainable development, New York, NY. 2015a. https://sustainabledevelopment.un.org/post2015/transformingourworld.
United Nations. Big Data and the 2030 agenda for sustainable development. Prepared by A. Maaroof. 2015b. http://www.unescap.org/events/call-participants-big-data-and-2030-agendasustainable-development-achieving-development.
United Nations. Habitat III Issue Papers, 21—Smart cities (V2.0), New York, NY. 2015c. https://collaboration.worldbank.org/docs/DOC–20778. Accessed 2 May 2017.
UNECE. Key performance indicators for smart sustainable cities to assess the achievement of sustainable development goals, vol. 1603. Geneva: UNECE; 2015.
Van de Voorde T, Jacquet W, Canters F. Mapping form and function in urban areas: an approach based on urban metrics and continuous impervious surface data. Landsc Urban Plan. 2011;102:143–55.
van Zoonen L. Privacy concerns in smart cities 2016. Gov Inf Quart. 2016;33(3):472–80.
Vinod Kumar TM, Dahiya B. Smart economy in smart cities. In: Vinod Kumar TM, editor. Smart economy in smart cities international collaborative research: ottawa, St. Louis, Stuttgart, Bologna, Cape Town, Nairobi, Dakar, Lagos, New Delhi, Varanasi, Vijayawada, Kozhikode, Hong Kong. Singapore: Springer; 2017.
Visvizi A, Lytras MD, Editorial MD. Policy making for smart cities: innovation and social inclusive economic growth for sustainability. J Sci Technol Policy Mak. 2018;9:1–10.
Visvizi A, Lytras MD. Rescaling and refocusing smart cities research: from mega cities to smart villages. J Sci Technol Policy Mak. 2018;9:134–45.
Visvizi A, Mazzucelli C, Lytras M. Irregular migratory flows: towards an ICT’ enabled integrated framework for resilient urban systems. J Sci Technol Policy Manag. 2017;8:227–42.
Wall R, Stravlopoulos S. Smart cities within world city networks. Appl Econom Lett. 2016;23(12):875–9.
Warleigh-Lack A. Greening the European Union for legitimacy? A cautionary reading of Europe 2020. Innov. Eur. J. Soc. Sci. Res. 2011;23:297–311.
Webb J, Hawkey D, Tingey M. Governing cities for sustainable energy: the UK case. Cities. 2016;54:28–35. https://doi.org/10.1016/j.cities.2015.10.014.
Webster J, Watson RT. Analyzing the past to prepare for the future: writing a literature review. MIS Quarterly. 2002;26(2):13–23.
Wheeler SM. Constructing sustainable development/safeguarding our common future: rethinking sustainable development. J Am Plan Assoc. 2002;68(1):110–1.
Williams K, Burton E, Jenks M, editors. Achieving sustainable urban form. London: E & FN Spon; 2000.
Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M. Internet of things for smart cities. IEEE Int Things J. 2014;1(1):22–32.
Zhang C. Fog and IoT: an overview of research opportunities. IEEE Int Things J. 2016;3(6):854–64.
Zhang Y, Cao T, Tian X, Li S, Yuan L, Jia H, Vasilakos AV. Parallel processing systems for big data: a survey. Proc IEEE. 2016;104(11):2114–36.
Zikopoulos PC, Eaton C, deRoos D, Deutsch T, Lapis G. Understanding big data. New York: McGraw Hill; 2012.