On the possibility of identifying human subjects using behavioural complexity analyses

Quantitative Biology - Tập 4 Số 4 - Trang 261-269 - 2016
Petr Klouček1, Armin von Gunten1
1<!--1--> CAMPsyN SUPAA Hôpital de Cery Route de Cery Lausanne University Hospital CH‐1008 Prilly Lausanne Switzerland

Tóm tắt

BackgroundIdentification of human subjects using a geometric approach to complexity analysis of behavioural data is designed to provide a basis for a more precise diagnosis leading towards personalised medicine.MethodsThe approach is based on capturing behavioural time‐series that can be characterized by a fractional dimension using non‐invasive longer‐time acquisitions of heart rate, perfusion, blood oxygenation, skin temperature, relative movement and steps frequency. The geometry based approach consists in the analysis of the area and centroid of convex hulls encapsulating the behavioural data represented in Euclidian index spaces based on the scaling properties of the self‐similar normally distributed behavioural time‐series of the above mentioned quantities.ResultsAn example demonstrating the presented approach of behavioural fingerprinting is provided using sensory data of eight healthy human subjects based on approximately fifteen hours of data acquisition. Our results show that healthy subjects can be factorized to different similarity groups based on a particular choice of a convex hull in the corresponding Euclidian space. One of the results indicates that healthy subjects share only a small part of the convex hull pertaining to a highly trained individual from the geometric comparison point of view. Similarly, the presented pair‐wise individual geometric similarity measure indicates large differences among the subjects suggesting the possibility of neuro‐fingerprinting.ConclusionsRecently introduced multi‐channel body‐attached sensors provide a possibility to acquire behavioural time‐series that can be mathematically analysed to obtain various objective measures of behavioural patterns yielding behavioural diagnoses favouring personalised treatments of, e.g., neuropathologies or aging.

Từ khóa


Tài liệu tham khảo

10.1007/BF00336961

10.1007/978-1-4684-0567-5

10.1098/rstb.1980.0084

10.1038/290091a0

10.1007/978-1-4757-4740-9

Ness M. V., 1968, Fractional Brownian motions, fractional noise and application., SIAM Rev., 422

Mandelbrot B. B., 1997, Fractals, Form, Chance and Dimension

10.1007/978-1-4614-7572-9

10.3389/fphys.2010.00012

10.2307/1971410

10.1098/rstb.2008.0296

Kloucek P. P.Zakharov andA.vonGunten Indexing of Behavioural Complexity Using Self‐similar Surrogate Data.Preprint 2016.

Morters P., 2010, Brownian motion. Cambridge Series in Statistical and Probabilistic Mathematics