On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3

Journal of Applied Physics - Tập 110 Số 7 - 2011
Wook Jo1, Silke Schaab1, Eva Sapper1, Ljubomira Ana Schmitt1, Hans‐Joachim Kleebe1, Andrew J. Bell2, Jürgen Rödel1
1Technische Universität Darmstadt 1 Institute of Materials Science, , 64287 Darmstadt, Germany
2University of Leeds 2 Institute of Materials Research, , Leeds, LS2 9JT, United Kingdom

Tóm tắt

Temperature-dependent dielectric permittivity of 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3 (BNT-6BT) lead-free piezoceramics was studied to disentangle the existing unclear issues over the crystallographic aspects and phase stability of the system. Application of existing phenomenological relaxor models enabled the relaxor contribution to the entire dielectric permittivity spectra to be deconvoluted. The deconvoluted data in comparison with the temperature-dependent dielectric permittivity of a classical perovskite relaxor, La-modified lead zirconate titanate, clearly suggest that BNT-6BT belongs to the same relaxor category, which was also confirmed by a comparative study on the temperature- dependent polarization hysteresis loops of both materials. Based on these results, we propose that the low-temperature dielectric anomaly does not involve any phase transition such as ferroelectric- to-antiferroelectric. Supported by transmission electron microscopy and X-ray diffraction experiments at ambient temperature, we propose that the commonly observed two dielectric anomalies are attributed to thermal evolution of ferroelectric polar nanoregions of R3c and P4bm symmetry, which coexist nearly throughout the entire temperature range and reversibly transform into each other with temperature.

Từ khóa


Tài liệu tham khảo

2009, J. Am. Ceram. Soc., 92, 1153, 10.1111/j.1551-2916.2009.03061.x

1991, Jpn. J. Appl. Phys., 30, 2236, 10.1143/JJAP.30.2236

1974, Ferroelectrics, 7, 347, 10.1080/00150197408238042

2005, Ferroelectrics, 315, 123, 10.1080/001501990910276

2005, Solid State Commun., 135, 394, 10.1016/j.ssc.2005.03.053

2007, Appl. Phys. Lett., 91, 112906, 10.1063/1.2783200

2009, Appl. Phys. Lett., 95, 032904, 10.1063/1.3182679

2009, J. Ceram. Soc. Jpn., 117, 797, 10.2109/jcersj2.117.797

2010, Phys. Rev. B, 82, 104112, 10.1103/PhysRevB.82.104112

2011, J. Appl. Phys., 109, 014110, 10.1063/1.3530737

1961, Sov. Phys. Solid State, 2, 2651

1980, Ferroelectrics, 25, 395, 10.1080/00150198008207029

1985, Ferroelectrics, 63, 153, 10.1080/00150198508221396

1986, Ferroelectrics Lett., 6, 147, 10.1080/07315178608200490

1995, Ferroelectrics, 165, 249, 10.1080/00150199508228304

2002, Acta Cryst., B58, 168

2008, Chem. Mater., 20, 5061, 10.1021/cm8004634

2009, J. Magn. Magn. Mater., 321, 1758, 10.1016/j.jmmm.2009.02.013

2004, Appl. Phys. Lett., 85, 91, 10.1063/1.1767592

2005, Jpn. J. Appl. Phys., 44, 4350, 10.1143/JJAP.44.4350

2006, Jpn. J. Appl. Phys., 45, 7409, 10.1143/JJAP.45.7409

2008, J. Electroceram., 21, 300, 10.1007/s10832-007-9147-x

2010, J. Appl. Phys., 108, 104105, 10.1063/1.3514093

1998, Appl. Phys. Lett., 73, 3683, 10.1063/1.122862

2008, J. Appl. Phys., 103, 034107, 10.1063/1.2838472

2008, J. Appl. Phys., 103, 034108, 10.1063/1.2838476

2009, J. Appl. Phys., 105, 094102, 10.1063/1.3121203

2010, J. Appl. Crystallogr., 43, 1314, 10.1107/S0021889810038264

2010, J. Am. Ceram. Soc., 93, 2452, 10.1111/j.1551-2916.2010.03778.x

2011, J. Am. Ceram. Soc., 94, 529, 10.1111/j.1551-2916.2010.04101.x

J. Am. Ceram. Soc., 10.1111/j.1551-2916.2011.04605.x

2010, Func. Mater. Lett., 3, 41, 10.1142/S179360471000083X

2010, J. Appl. Phys., 108, 014110, 10.1063/1.3437645

2011, Phys. Rev. B, 83, 054118, 10.1103/PhysRevB.83.054118

2011, J. Am. Ceram. Soc., 94, 1350, 10.1111/j.1551-2916.2011.04509.x

2011, J. Mater. Sci., 46, 5702, 10.1007/s10853-011-5523-7

2011, J. Eur. Ceram. Soc., 31, 2107, 10.1016/j.jeurceramsoc.2011.05.008

J. Am. Ceram. Soc., 10.1111/j.1551-2916.2011.04670.x

2007, Key Eng. Mater., 350, 93, 10.4028/www.scientific.net/KEM.350.93

2009, J. Optoelectr. Adv. Mater., 11, 215

2011, J. Adv. Dielectrics, 1, 107, 10.1142/S2010135X11000148

2005, Appl. Phys. Lett., 87, 012904, 10.1063/1.1990253

1990, J. Appl. Phys., 68, 2916, 10.1063/1.346425

1994, Jpn. J. Appl. Phys., 33, 1959, 10.1143/JJAP.33.1959

1996, Inter. J. Mod. Phys. B, 10, 2007, 10.1142/S021797929600091X

1995, J. Mater. Res., 10, 926, 10.1557/JMR.1995.0926

1999, Phys. Rev. B, 60, 6420, 10.1103/PhysRevB.60.6420

1999, Physica A, 274, 361, 10.1016/S0378-4371(99)00380-5

1999, J. Am. Ceram. Soc., 82, 2698, 10.1111/j.1151-2916.1999.tb02144.x

2006, Scripta Mater., 55, 927, 10.1016/j.scriptamat.2006.07.038

1973, Ferroelectrics, 5, 3, 10.1080/00150197308235773

2011, J. Alloys Compounds, 509, 2216, 10.1016/j.jallcom.2010.11.003

2009, J. Am. Ceram. Soc., 93, 2452

2010, Funct. Mater. Lett., 3, 55, 10.1142/S1793604710000920

2004, Micron., 35, 399, 10.1016/j.micron.2004.02.003

2010, Phys. Rev. B, 81, 144124, 10.1103/PhysRevB.81.144124

2011, Phys. Rev. B, 83, 054107, 10.1103/PhysRevB.83.054107

2011, Appl. Phys. Lett., 99, 042901, 10.1063/1.3615675

1961, Sov. Phys. Solid State, 2, 2584

1970, J. Phys. Soc. Jpn., 28, 26

1992, Phys. Rev. Lett., 68, 847, 10.1103/PhysRevLett.68.847

1996, Phys. Rev. B., 53, 11281, 10.1103/PhysRevB.53.11281

2003, J. Phys.: Condens. Matter, 15, R367, 10.1088/0953-8984/15/9/202

2006, J. Mater. Sci., 41, 31, 10.1007/s10853-005-5915-7

2009, Phys. Rev. B, 79, 140102, 10.1103/PhysRevB.79.140102

Curr. Appl. Phys., 10.1016/j.cap.2011.03.023

1978, J. Am. Ceram. Soc., 61, 46, 10.1111/j.1151-2916.1978.tb09227.x

1989, J. Mater. Sci. Lett., 8, 771, 10.1007/BF01730133

1951, Phys. Rev., 84, 476, 10.1103/PhysRev.84.476

2007, Appl. Phys. Lett., 90, 252907, 10.1063/1.2751136

1953, Phys. Rev., 91, 513, 10.1103/PhysRev.91.513

2010, Appl. Phys. Lett., 97, 132902, 10.1063/1.3493191

1978, Ferroelectrics, 18, 473, 10.1080/00150197808236770

2011, J. Appl. Phys., 109, 034107, 10.1063/1.3544481

J. Am. Ceram. Soc., 10.1111/j.1551-2916.2011.04631.x

1987, Ferroelectrics, 76, 241, 10.1080/00150198708016945

2004, Ferroelectrics, 302, 293, 10.1080/00150190490455269

2011, Appl. Phys. Lett., 98, 252904, 10.1063/1.3602316

2000, J. Phys. Chem. Solids, 61, 301, 10.1016/S0022-3697(99)00297-8