On the inviscid limit of the 2D Navier–Stokes equations with vorticity belonging to BMO-type spaces

Frédéric Bernicot1, Tarek Elgindi2, Sahbi Keraani3
1CNRS – Université de Nantes, Laboratoire de Mathématiques Jean Leray, 2, Rue de la Houssinière 44322, Nantes Cedex 03, France
2Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, 10012-1185 NY, USA
3UFR de mathématiques, Université de Lille 1, 59655 Villeneuve d'Ascq cedex, France

Tài liệu tham khảo

Blumenthal, 1960, Some theorems on stable processes, Trans. Amer. Math. Soc., 95, 263, 10.1090/S0002-9947-1960-0119247-6 Bahouri, 2011, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343 Bernicot, 2015, Self-improving properties for abstract Poincaré type inequalities, Trans. Amer. Math. Soc. Bernicot Bernicot, 2014, Sharp constants for composition with a measure-preserving map, Math. Res. Lett., 21, 937, 10.4310/MRL.2014.v21.n5.a2 Bernicot, 2014, On the global well-posedness of the 2D Euler equations for a large class of Yudovich type data, Ann. Sci. Éc. Norm. Supér. (4), 47, 559, 10.24033/asens.2222 Bertozzi, 2002, Vorticity and Incompressible Flow, vol. 27 Caffarelli, 2003, Estimates in the generalized Campanato–John–Nirenberg spaces for fully nonlinear elliptic equations, Duke Math. J., 118, 1, 10.1215/S0012-7094-03-11811-6 Chae, 1993, Weak solutions of 2-D Euler equations with initial vorticity in L(log⁡L), J. Differ. Equ., 103, 323, 10.1006/jdeq.1993.1052 Chemin, 1998 Chemin, 1996, A remark on the inviscid limit for two-dimensional incompressible fluids, Commun. Partial Differ. Equ., 21, 1771 Chen Cozzi, 2007, Vanishing viscosity in the plane for vorticity in borderline spaces of Besov type, J. Differ. Equ., 235, 647, 10.1016/j.jde.2006.12.022 Delort, 1991, Existence de nappes de tourbillon en dimension deux, J. Am. Math. Soc., 4, 553, 10.1090/S0894-0347-1991-1102579-6 DiPerna, 1987, Concentrations in regularization for 2D incompressible flow, Commun. Pure Appl. Math., 40, 301, 10.1002/cpa.3160400304 Grigor'yan, 2014, Heat kernels on metric measure spaces, 147 Lopes Filho, 2001, Existence of vortex sheets with reflection symmetry in two space dimensions, Arch. Ration. Mech. Anal., 158, 235, 10.1007/s002050100145 Franchi, 1998, Self-improving properties of John–Nirenberg and Poincaré inequalities on space of homogeneous type, J. Funct. Anal., 153, 108, 10.1006/jfan.1997.3175 Fujita, 1962, On the nonstationary Navier–Stokes system, Rend. Semin. Mat. Univ. Padova, 32, 243 Gérard, 1992, Résultats récents sur les fluides parfaits incompressibles bidimensionnels, Astérisque, 206, 411 Giga, 1988, 2D Navier–Stokes flow with measures as initial vorticity, Arch. Ration. Mech. Anal., 104, 223, 10.1007/BF00281355 Grafakos, 2006 Kelliher, 2004, The inviscid limit for two-dimensional incompressible fluids with unbounded vorticity, Math. Res. Lett., 11, 519, 10.4310/MRL.2004.v11.n4.a9 Leray, 1934, Sur le mouvement d'un liquide visqueux remplissant l'espace, Acta Math., 63, 193, 10.1007/BF02547354 Lions, 1996 Masmoudi, 2007, Remarks about the inviscid limit of the Navier–Stokes system, Commun. Math. Phys., 270, 777, 10.1007/s00220-006-0171-5 Pfetre, 1966, On convolution operators leaving Lp,λ spaces invariant, Ann. Mat. Pura Appl., 72, 295, 10.1007/BF02414340 Serfati, 1995, Structures holomorphes à faible régularité spatiale en mécanique des fluides, J. Math. Pures Appl., 74, 95 Spanne, 1965, Some function spaces defined using the mean oscillation over cubes, Ann. Sc. Norm. Super. Pisa, 19, 593 Taniuchi, 2004, Uniformly local Lp estimate for 2D vorticity equation and its application to Euler equations with initial vorticity in BMO, Commun. Math. Phys., 248, 169, 10.1007/s00220-004-1095-6 Vishik, 1999, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. Éc. Norm. Supér. (4), 32, 769, 10.1016/S0012-9593(00)87718-6 Yudovich, 1963, Nonstationary flow of an ideal incompressible liquid, Zh. Vychisl. Mat., 3, 1032 Yudovich, 1995, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Math. Res. Lett., 2, 27, 10.4310/MRL.1995.v2.n1.a4