On the inviscid limit of the 2D Navier–Stokes equations with vorticity belonging to BMO-type spaces
Tài liệu tham khảo
Blumenthal, 1960, Some theorems on stable processes, Trans. Amer. Math. Soc., 95, 263, 10.1090/S0002-9947-1960-0119247-6
Bahouri, 2011, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343
Bernicot, 2015, Self-improving properties for abstract Poincaré type inequalities, Trans. Amer. Math. Soc.
Bernicot
Bernicot, 2014, Sharp constants for composition with a measure-preserving map, Math. Res. Lett., 21, 937, 10.4310/MRL.2014.v21.n5.a2
Bernicot, 2014, On the global well-posedness of the 2D Euler equations for a large class of Yudovich type data, Ann. Sci. Éc. Norm. Supér. (4), 47, 559, 10.24033/asens.2222
Bertozzi, 2002, Vorticity and Incompressible Flow, vol. 27
Caffarelli, 2003, Estimates in the generalized Campanato–John–Nirenberg spaces for fully nonlinear elliptic equations, Duke Math. J., 118, 1, 10.1215/S0012-7094-03-11811-6
Chae, 1993, Weak solutions of 2-D Euler equations with initial vorticity in L(logL), J. Differ. Equ., 103, 323, 10.1006/jdeq.1993.1052
Chemin, 1998
Chemin, 1996, A remark on the inviscid limit for two-dimensional incompressible fluids, Commun. Partial Differ. Equ., 21, 1771
Chen
Cozzi, 2007, Vanishing viscosity in the plane for vorticity in borderline spaces of Besov type, J. Differ. Equ., 235, 647, 10.1016/j.jde.2006.12.022
Delort, 1991, Existence de nappes de tourbillon en dimension deux, J. Am. Math. Soc., 4, 553, 10.1090/S0894-0347-1991-1102579-6
DiPerna, 1987, Concentrations in regularization for 2D incompressible flow, Commun. Pure Appl. Math., 40, 301, 10.1002/cpa.3160400304
Grigor'yan, 2014, Heat kernels on metric measure spaces, 147
Lopes Filho, 2001, Existence of vortex sheets with reflection symmetry in two space dimensions, Arch. Ration. Mech. Anal., 158, 235, 10.1007/s002050100145
Franchi, 1998, Self-improving properties of John–Nirenberg and Poincaré inequalities on space of homogeneous type, J. Funct. Anal., 153, 108, 10.1006/jfan.1997.3175
Fujita, 1962, On the nonstationary Navier–Stokes system, Rend. Semin. Mat. Univ. Padova, 32, 243
Gérard, 1992, Résultats récents sur les fluides parfaits incompressibles bidimensionnels, Astérisque, 206, 411
Giga, 1988, 2D Navier–Stokes flow with measures as initial vorticity, Arch. Ration. Mech. Anal., 104, 223, 10.1007/BF00281355
Grafakos, 2006
Kelliher, 2004, The inviscid limit for two-dimensional incompressible fluids with unbounded vorticity, Math. Res. Lett., 11, 519, 10.4310/MRL.2004.v11.n4.a9
Leray, 1934, Sur le mouvement d'un liquide visqueux remplissant l'espace, Acta Math., 63, 193, 10.1007/BF02547354
Lions, 1996
Masmoudi, 2007, Remarks about the inviscid limit of the Navier–Stokes system, Commun. Math. Phys., 270, 777, 10.1007/s00220-006-0171-5
Pfetre, 1966, On convolution operators leaving Lp,λ spaces invariant, Ann. Mat. Pura Appl., 72, 295, 10.1007/BF02414340
Serfati, 1995, Structures holomorphes à faible régularité spatiale en mécanique des fluides, J. Math. Pures Appl., 74, 95
Spanne, 1965, Some function spaces defined using the mean oscillation over cubes, Ann. Sc. Norm. Super. Pisa, 19, 593
Taniuchi, 2004, Uniformly local Lp estimate for 2D vorticity equation and its application to Euler equations with initial vorticity in BMO, Commun. Math. Phys., 248, 169, 10.1007/s00220-004-1095-6
Vishik, 1999, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. Éc. Norm. Supér. (4), 32, 769, 10.1016/S0012-9593(00)87718-6
Yudovich, 1963, Nonstationary flow of an ideal incompressible liquid, Zh. Vychisl. Mat., 3, 1032
Yudovich, 1995, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Math. Res. Lett., 2, 27, 10.4310/MRL.1995.v2.n1.a4