On the independence of primal algebras

Mathematische Zeitschrift - Tập 73 - Trang 79-94 - 1960
Edward S. O'Keefe1
1Dept. of Math., Coll. of Engin., New York University, New York 53, (USA)

Tài liệu tham khảo

Stone, M. H.: The Theory of Representations of Boolean Algebras. Trans. Amer. Math. Soc.40, 37–111 (1936). McCoy, N. H., andDeane Montgomery: A Representation of Generalized Boolean Rings. Duke Math. J.3, 455–459 (1937). McCoy, N. H.: Subrings of Direct Sums. Amer. J. Math.60, 374–382 (1938). Rosenbloom, P. C.: Post Algebras I, Postulates and General Theory. Amer. J. Math.64, 167–188 (1942). Birkhoff, G.: Subdirect Unions in Universal Algebra. Bull. Amer. Math. Soc.50, 764–768 (1944). Wade, L. I.: Post Algebras and Rings. Duke Math. J.12, 389–395 (1945). Foster, A. L.: Generalized “Boolean” Theory of Universal Algebras, Part I: Subdirect Sums and Normal Representation Theorem. Math. Z.58, 306–336 (1953), and Part II: Identities and Subdirect Sums of Functionally Complete Algebras. Math. Z.59, 191–199 (1953). Foster, A. L.: The Identities of-and Unique Factorization within-Classes of Universal Algebras. Math. Z.62, 171–188 (1955). Foster, A. L.: The Generalized Chinese Remainder Theorem for Universal Algebras; Subdirect Factorization. Math. Z.66, 452–469 (1957). Foster, A. L.: Ideals and their Structure in Classes of Operational Algebras. Math. Z.65, 70–75 (1956).