On the global existence of 3-D magneto-hydrodynamic system in the critical spaces

Springer Science and Business Media LLC - Tập 2015 - Trang 1-14 - 2015
Xiaolian Ai1, Zilai Li2
1School of Mathematics, Northwest University, Xi’an, P. R. China
2School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, P.R. China

Tóm tắt

In this article, we prove the global existence of the three-dimensional inhomogeneous incompressible magneto-hydrodynamic system under the assumptions that the initial velocity field and the initial conductivity are small in the critical space $\dot{B}^{1/2}_{2,1}({\mathbb{R}}^{3})$ .

Tài liệu tham khảo

Davidson, PA: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001) Desjardins, B, Le Bris, C: Remarks on a nonhomogeneous model of magnetohydrodynamics. Differ. Integral Equ. 11(3), 377-394 (1998) Gerbeau, JF, Le Bris, C: Existence of solution for a density-dependent magnetohydrodynamic equation. Adv. Differ. Equ. 2(3), 427-452 (1997) Abidi, H, Hmidi, T: Résultats d’existence globale pour le systéme de la magnethohydrodynamique inhomogene. Ann. Math. Blaise Pascal 14(1), 103-148 (2007) Chen, Q, Tan, Z, Wang, YJ: Strong solutions to the incompressible magnetohydrodynamic equations. Math. Methods Appl. Sci. 34(1), 94-107 (2011) Huang, XD, Wang, Y: Global strong solution to the 2D nonhomogeneous incompressible MHD system. J. Differ. Equ. 254(2), 511-527 (2013) Gui, G: Global well-posedness of the two-dimensional incompressible magnetohydrodynamic system with variable density and electrical conductivity. J. Funct. Anal. 267(5), 1488-1539 (2015) Abidi, H, Gui, G, Zhang, P: On the wellposedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces. Arch. Ration. Mech. Anal. 204(1), 189-230 (2012) Chemin, JY: Perfect Incompressible Fluids. Oxford University Press, New York (1998) Peetre, J: New Thoughts on Besov Spaces. Duke University Mathematical Series, vol. 1. Duke University Press, Durham (1976) Triebel, H: Theory of Function Spaces. Monographs in Mathematics, vol. 78. Birkhäuser, Basel (1983) Bony, JM: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. Éc. Norm. Super. 14(4), 209-246 (1981) Bahouri, H, Chemin, JY, Danchin, R: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer, Berlin (2011) Chemin, JY, Lerner, N: Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes. J. Differ. Equ. 121(2), 314-328 (1995) Chemin, JY: Théorémes d’unicité pour le systéme de Navier-Stokes tridimensionnel. J. Anal. Math. 77(1), 27-50 (1999) Li, ZL, Wang, M, Yang, J: On the local wellposedness of three-dimensional MHD system in the critical spaces. Acta Math. Appl. Sinica (Engl. Ser.) 31, 607-622 (2015)