On the effect of topography on surface wave propagation in the ambient noise frequency range

Journal of Seismology - Tập 16 - Trang 221-231 - 2011
Andreas Köhler1, Christian Weidle1, Valérie Maupin1
1Department of Geosciences, University of Oslo, Oslo, Norway

Tóm tắt

Due to the increasing popularity of analyzing empirical Green’s functions obtained from ambient seismic noise, more and more regional tomographical studies based on short-period surface waves are published. Results could potentially be biased in mountainous regions where topography is not small compared to the wavelength and penetration depth of the considered waves. We investigate the effect of topography on the propagation of short-period Rayleigh waves empirically by means of synthetic data using a spectral element code and a 3-D model with real topography. We show that topography along a profile through the studied area can result in an underestimation of phase velocities of up to about 0.7% at the shortest investigated period (3 s). Contrary to the expectation that this bias results from the increased surface distance along topography, we find that this error can be estimated by local topographic contrasts in the vicinity of the receiver alone. We discuss and generalize our results by considering topographic profiles through other mountain ranges and find that southern Norway is a good proxy to assess the topography effect. Nevertheless, topographic bias on phase velocity measurements is in general not large enough to significantly affect recovered velocity variations in the ambient noise frequency range.

Tài liệu tham khảo

Eguiluz, AG, Maradudin, AA (1983) Frequency shift and attenuation length of a rayleigh wave due to surface roughness. Phys Rev B 28(2):728–747. doi:10.1103/PhysRevB.28.728 Fu L, Wu R (2001) A hybrid BE-GS method for modeling regional wave propagation. Pure Appl Geophys 158(7):1251–1277. doi:10.1007/PL00001222 Fu L, Wu R, Campillo M (2002) Energy partition and attenuation of regional phases by random free surface. Bull Seismol Soc Am 92(5):1992–2007. doi:10.1785/0120000292 GLOBETaskTeam, Hastings D, Dunbar P, Elphingstone G, Bootz M, Murakami H, Maruyama H, Masaharu H, Holland P, Payne J, Bryant N, Logan MJ TL and, G S, MacDonald J (1999) The Global Land One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, Boulder. Digital data base on the World Wide Web (http://wwwngdcnoaagov/mgg/topo/globehtml) and CD-ROMs Gouédard P, Stehly L, Brenguier F, Campillo M, Colin de Verdière Y, Larose E, Margerin L, Roux P, Sánchez-Sesma F, Shapiro N, Weaver RL (2008) Cross-correlation of random fields: mathematical approach and applications. Geophysical Prospecting 56:375–394. doi:10.1111/j.1365-2478.2007.00684.x Guo Z, Gao X, Yao H, Li J, Wang W (2009) Midcrustal low-velocity layer beneath the central Himalaya and southern Tibet revealed by ambient noise array tomography. Geochem Geophys Geosyst 10:Q05,007. doi:10.1029/2009GC002458 Huang X, Maradudin AA (1987) Propagation of surface acoustic waves across random gratings. Phys Rev B 36(15):7827–7839. doi:10.1103/PhysRevB.36.7827 Köhler A, Weidle C, Maupin V (2011) Directionality analysis and Rayleigh wave tomography of ambient seismic noise in southern Norway. Geophys. J. Int. 184:287–300. doi:10.1111/j.1365-246X.2010.04830.x Komatitsch D, Vilotte J (1998) The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull Seismol Soc Am 88(2):368–392 Levshin A, Yanovskaya T, Lander A, Bukchin B, Barmin M, Ratnikova L, Its E (1989) In: Keilis-Borok VI (ed) Seismic surface waves in a laterally inhomogeneous earth. Kluwer, Norwell Lidmar-Bergström K, Ollier C, Sulebak J (2000) Landforms and uplift history of southern Norway. Glob Planet Change 24(3–4):211–231. doi:10.1016/S0921-8181(00)00009-6 Lin F, Ritzwoller M, Snieder R (2009) Eikonal tomography: surface wave tomography by phase front tracking across a regional broad-band seismic array. Geophys J Int 177(3):1091–1110. doi:10.1111/j.1365-246X.2009.04105.x Maradudin A, Huang X, Mayer A (1991) Propagation of shear horizontal surface acoustic waves parallel to the grooves of a random grating. J Appl Physi 70(1):53–62. doi:10.1063/1.350270 Maupin V (2002) The amplitude of the Love–Rayleigh discrepancy created by small-scale heterogeneities. Geophys J Int 150(1):58–64. doi:10.1046/j.1365-246X.2002.01676.x Mayer A, Zierau W, Maradudin A (1991) Surface acoustic waves propagating along the grooves of a periodic grating. J Appl Physi 69(4):1942–1947. doi:10.1063/1.348969 Palasantzas G (1994) Eigenwave spectrum of surface acoustic waves on a rough self-affine fractal surface. Phys Rev B 50(24):18,670–18,673. doi:10.1103/PhysRevB.50.18670 Peter D, Komatitsch D, Luo Y, Martin R, Le Goff N, Casarotti E, Le Loher P, Magnoni F, Liu Q, Blitz C, Nissen-Meyer T, Basini P, Tromp J (2011) Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes. Geophys J Int 186. doi:10.1111/j.1365-246X.2011.05044.x Ritzwoller M, Levshin A (1998) Eurasian surface wave tomography: group velocities. J Geophys Res 103(B3):4839–4878. doi:10.1029/97JB02622 Rodgers A, Petersson N, Sjogreen B (2010) Simulation of topographic effects on seismic waves from shallow explosions near the North Korean nuclear test site with emphasis on shear wave generation. J Geophys Res 115:B11,309. doi:10.1029/2010JB007707 Sabra K, Gerstoft P, Roux P, Kuperman W, Fehler M (2005) Extracting time-domain Green’s function estimates from ambient seismic noise. Geophys Res Lett 32:L03,310. doi:10.1029/2004GL021862 Shapiro N, Campillo M (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys Res Lett 31:L07,614. doi:10.1029/2004GL019491 Snieder R (1986) The influence of topography on the propagation and scattering of surface waves. Phys Earth Planet In 44(3):226–241. doi:10.1016/0031-9201(86)90072-5 Stratford W, Thybo H, Faleide J, Olesen O, Tryggvason A (2009) New Moho Map for onshore southern Norway. Geophys J Int 178:1755–1765. doi:10.1111/j.1365-246X.2009.04240.x Turcotte D (1997) Fractals and chaos in geology and geophysics. Cambridge University Press, Cambridge Weidle C, Maupin V, Ritter J, Kvaerna T, Schweitzer J, Balling N, Thybo H, Faleide J, Wenzel F (2010) MAGNUS—a seismological broadband experiment to resolve crustal and upper mantle structure beneath the southern Scandes mountains in Norway. Seismol Res Lett 81(1):76–84. doi:10.1785/gssrl.81.1.76 Wessel P, Smith W (1998) New, improved version of GMT released. EOS Trans Amer Geophys Un 79(47):579–579 Wu X, Wu R (2001) Lg-wave simulation in heterogeneous crusts with surface topography using screen propagators. Geophys J Int 146(3):670–678. doi:10.1046/j.1365-246X.2001.00489.x