On the discovery of spatial-temporal fluctuating patterns
Tóm tắt
In this paper, we explore a new mining paradigm, called spatial-temporal fluctuating patterns (abbreviated as STFs), to discover potentially fluctuating and useful feature sets from the spatial-temporal data. These feature sets have some properties which are variant as time advances. Once STFs are discovered, we can find the turning points of patterns, which enables anomaly detection and transformation discovery over time. For example, the discovery of STFs can possibly figure out the phenomenon of virus variation during the epidemic outbreak, further providing the government with clues for the epidemic control. Therefore, we develop a union-based mining with the downward-closure structure to speed up the spatial-temporal mining process and dynamically compute fluctuating patterns. As shown in our experimental studies, the proposed framework can efficiently discover STFs on a real epidemic disease dataset, showing its prominent advantages to be utilized in real applications.
Tài liệu tham khảo
Aggarwal, C.C., Han, J.: Frequent Pattern Mining. Springer, Berlin (2014)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB (1994)
Almanie, T., Mirza, R., Lor, E.: Crime prediction based on crime types and using spatial and temporal criminal hotspots. Int. J. Data Min. Knowl. Manag. Process (2015)
Alves, R., Belo, O., Ribeiro, J.: Mining top-k multidimensional gradients. In: DaWaK (2007)
Alves, R., Ribeiro, J., Belo, O.: Mining significant change patterns in multidimensional spaces. Int. J. Bus. Intell. Data Min. 4, 219–241 (2009)
Andrienko, G., Malerba, D., May, M., Teisseire, M.: Mining spatio-temporal data. J. Intell. Inf. Syst. 27(3), 187–190 (2006)
Béchet, N., Cellier, P., Charnois, T., Crémilleux, B., Jaulent, M.: Sequential pattern mining to discover relations between genes and rare diseases. In: CBMS (2012)
Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms. In: SPIRE (2000)
Birant, D., Kut, A.: ST-DBSCAN: an algorithm for clustering spatial-temporal data. Data Knowl. Eng. 60(1), 208–221 (2007)
Bittner, T.: Rough sets in spatio-temporal data mining. In: Proceedings of Temporal, Spatial, and Spatio-Temporal Data Mining (2000)
Chen, H., Chung, W., Xu, J.J., Wang, G., Qin, Y., Chau, M.: Crime data mining: a general framework and some examples. Computer 37, 50–56 (2004)
Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Berlin (2009)
Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review. ACM Sigmod Rec. 34, 18–26 (2005)
Ganguly, A.R., Steinhaeuser, K.: Data mining for climate change and impacts. In: Proceedings of IEEE International Conference on Data Mining Workshops (2008)
Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: SIGKDD (2007)
Gudmundsson, J., van Kreveld, M.: Computing longest duration flocks in spatio-temporal data. Manuscript, April (2006)
Hengl, T., Heuvelink, G.B., Tadić, M.P., Pebesma, E.J.: Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images. Theor. Appl. Climatol. 107, 265–277 (2012)
Ho, C., Li, H., Kuo, F., Lee, S.: Incremental mining of sequential patterns over a stream sliding window. In: Workshops Proceedings of ICDM (2006)
Hora, A.C., Anquetil, N., Ducasse, S., . Valente, M. T.: Mining system specific rules from change patterns. In: WCRE (2013)
Jeung, H., Yiu, M. L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in trajectory databases. In: PVLDB (2008)
Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 7, 881–892 (2002)
Li, I., Huang, J., Liao, I.: Mining sequential pattern changes. J. Inf. Sci. Eng. 30, 973–990 (2014)
Li, Z., Ding, B., Han, J., Kays, R.: Swarm: mining relaxed temporal moving object clusters. In: PVLDB (2010)
Liu, B., Hsu, W., Han, H., Xia, Y.: Mining changes for real-life applications. In: DaWaK (2000)
Liu, Y., Zhao, Y., Chen, L., Pei, J., Han, J.: Mining frequent trajectory patterns for activity monitoring using radio frequency tag arrays. IEEE Trans. Parallel Distrib. Syst. 23, 2138–2149 (2012)
Lo, D., Ramalingam, G., Ranganath, V.P., Vaswani, K.: Mining quantified temporal rules: formalism, algorithms, and evaluation. Sci. Comput. Program. 77, 743–759 (2012)
Mennis, J.L., Liu, J.W.: Mining association rules in spatio-temporal data: an analysis of urban socioeconomic and land cover change. Trans. GIS 9, 5–17 (2005)
Rao, K.V., Govardhan, A., Rao, K.C.: Spatiotemporal data mining: issues, tasks and applications. Int. J. Comput. Sci. Eng. Surv. 3, 39 (2012)
Reynolds, D.: Gaussian mixture models. In: Li, Stan Z., Jain, Anil (eds.) Encyclopedia of Biometrics. Springer, Boston (2015)
Rokach, L., Maimon, O.: Clustering methods. In: Rokach, L., Maimon, O. (eds.) Data Mining and Knowledge Discovery Handbook. Springer, New York (2005)
Scellato, S., Musolesi, M., Mascolo, C., Latora, V., Campbell A.T.: Nextplace: a spatio-temporal prediction framework for pervasive systems. In: Pervasive (2011)
Shin, J., Shin, D., Shin, D.: Predicting of abnormal behavior using hierarchical Markov model based on user profile in ubiquitous environment. In: GPC (2013)
Teng, S.-Y., Ou, C.-K., Chuang, K.-T.: Mining temporal fluctuating patterns. In: PAKDD (2017)
Trasarti, R., Pinelli, F., Nanni, M., Giannotti, F.: Mining mobility user profiles for car pooling. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2011)
Tsai, C., Shieh, Y.: A change detection method for sequential patterns. Decis. Support Syst. 46, 501–511 (2009)
Verhein, F., Chawla, S.: Mining spatio-temporal association rules, sources, sinks, stationary regions and thoroughfares in object mobility databases. In: Database Systems for Advanced Applications (2006)
Yang, D., Rundensteiner, E.A., Ward, M.O.: Shared execution strategy for neighbor-based pattern mining requests over streaming windows. ACM Trans. Database Syst. 37, 5 (2012)
Yu, J., Ku, W.-S., Sun, M.-T., Lu, H.: An RFID and particle filter-based indoor spatial query evaluation system. In: EDBT (2013)