On the concavity properties of certain arithmetic sequences and polynomials

Mathematische Zeitschrift - Tập 305 - Trang 1-13 - 2023
Bao-Xuan Zhu1
1School of Mathematical Sciences, Jiangsu Normal University, Xuzhou, People’s Republic of China

Tóm tắt

Given a sequence $$\alpha =(a_k)_{k\ge 0}$$ of nonnegative numbers, define a new sequence $${\mathcal {L}}(\alpha )=(b_k)_{k\ge 0}$$ by $$b_{k}=a^2_{k}-a_{k-1}a_{k+1}$$ . The sequence $$\alpha $$ is called r-log-concave if $${\mathcal {L}}^{i}(\alpha )=\mathcal {L}({\mathcal {L}}^{i-1}(\alpha ))$$ is a nonnegative sequence for all $$1\le i\le r$$ . In this paper, we study the r-log-concavity and its q-analogue for $$r=2,3$$ using total positivity of matrices. We show the 6-log-concavity of the Taylor coefficients of the Riemann $$\xi $$ -function. We give some criteria for r-q-log-concavity for $$r=2,3$$ . As applications, we get 3-q-log-concavity of q-binomial coefficients and different q-Stirling numbers of two kinds, which extends results for q-log-concavity. We also present some results for r-q-log-concavity from the linear transformations. Finally, we pose an interesting question.

Tài liệu tham khảo

Boros, G., Moll, V.: Irresistible Integrals. Cambridge University Press, Cambridge (2004) Brändén, P.: On linear transformations preserving the Pólya frequency property. Trans. Am. Math. Soc. 358, 3697–3716 (2006) Brändén, P.: Iterated sequences and the geometry of zeros. J. Reine Angew. Math. 658, 115–131 (2011) Brenti, F.: Unimodal, log-concave and Pólya frequency sequences in combinatorics. Mem. Amer. Math. Soc. 413, viii+106 (1989) Brenti, F.: Log-concave and unimodal sequences in algebra, combinatorics, and geometry: An update. Contemp. Math. 178, 417–441 (1994) Brenti, F.: Combinatorics and Total Positivity. J. Combin. Theory Ser. A 71, 175–218 (1995) Butler, L.M.: The \(q\)-log-concavity of \(q\)-binomial coefficients. J. Combin. Theory Ser. A 54, 54–63 (1990) Chen, W.Y.C., Xia, E.X.W.: 2-Log-concavity of the Boros–Moll polynomials. Proc. Edinb. Math. Soc. (2) 56(3), 701–722 (2013) Chen, W.Y.C., Wang, L.X.W., Yang, A.L.B.: Schur positivity and the \(q\)-log-convexity of the Narayana polynomials. J. Algebraic Combin. 32(3), 303–338 (2010) Chen, W.Y.C., Dou, D.Q.J., Yang, A.L.B.: Brändén’s conjectures on the Boros–Moll polynomials. Int. Math. Res. Not. IMRN 20, 4819–4828 (2013) Craven, T., Csordas, G.: Iterated Laguerre and Turán inequalities. J. Inequal. Pure Appl. Math. 3(3), Article 39 (2002) Csordas, G., Norfolk, T.S., Varga, R.S.: The Riemann hypothesis and the Turán inequalities. Trans. Am. Math. Soc. 296, 521–541 (1986) Davenport, H., Pólya, G.: On the product of two power series. Can. J. Math. 1, 1–5 (1949) Fürlinger, J., Hofbauer, J.: \(q\)-Catalan numbers. J. Combin. Theory Ser. A 40, 248–264 (1985) Griffin, M., Ono, K., Rolen, L., Zagier, D.: Jensen polynomials for the Riemann zeta function and other sequences. Proc. Natl. Acad. Sci. USA 116, 11103–11110 (2019) Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1952) Jensen, J.L.W.V.: Recherches sur la théorie des équations. Acta Math. 36, 181–195 (1913) Karlin, S.: Total Positivity, vol. I. Stanford University Press, Stanford (1968) Katkova, O.M.: Multiple positivity and the Riemann zeta-function. Comput. Methods Funct. Theory 7, 13–31 (2007) Kauers, M., Paule, P.: A computer proof of Moll’s log-concavity conjecture. Proc. Am. Math. Soc. 135, 3847–3856 (2007) Krattenthaler, C.: On the \(q\)-log-concavity of Gaussian binomial coefficients. Monatsh. Math. 107, 333–339 (1989) Leroux, P.: Reduced matrices and \(q\)-log-concavity properties of \(q\)-Stirling numbers. J. Combin. Theory Ser. A 54, 64–84 (1990) Liu, L.L., Wang, Y.: On the log-convexity of combinatorial sequences. Adv. Appl. Math. 39, 453–476 (2007) MacMahon, P.A.: Combinatorics. In: Andrews, G.E. (ed.) Collected Papers, vol. I. MIT Press, Cambridge (1978) McNamara, P.R.W., Sagan, B.E.: Infinite log-concavity: developments and conjectures. Adv. Appl. Math. 44, 1–15 (2010) Moll, V.H.: The evaluation of integrals: a personal story. Not. Am. Math. Soc. 49, 311–317 (2002) Obreschkoff, N.: Verteilung und Berechnung der Nullstellen reeller Polynome. VEB Deutscher Verlag der Wissenschaften, Berlin (1963) Sagan, B.E.: Inductive proofs of \(q\)-log concavity. Discrete Math. 99, 289–306 (1992) Sagan, B.E.: Log concave sequences of symmetric functions and analogs of the Jacobi–Trudi determinants. Trans. Am. Math. Soc. 329, 795–811 (1992) Schoenberg, I.J.: A note on multiply positive sequences and the Descartes rule of signs. Rend. Circ. Mat. Palermo (2) 4, 123–131 (1955) Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences, A002410, A058303 Stanley, R.P.: Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Graph Theory and Its Applications: East and West. Ann. New York, Acad. Sei. 576, 500–535 (1989) Titchmarsh, E.S.: The Theory of the Riemann Zeta-Function. Clarendon Press, Oxford (1951) Wachs, M., White, D.: \(p, q\)-Stirling numbers and set partition statistics. J. Combin. Theory Ser. A 56, 27–46 (1991) Wang, Y., Yeh, Y.-N.: Log-concavity and LC-positivity. J. Combin. Theory Ser. A 114, 195–210 (2007)