Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Cơ chế kích hoạt của các kênh canxi điều khiển bởi kho dự trữ
Tóm tắt
Sự phát triển của kỹ thuật ghim màng đã cách mạng hóa sự hiểu biết của chúng ta về khoa học sự sống. Một lĩnh vực mà nó đã góp phần to lớn là tín hiệu tế bào. Ở nhiều loại tế bào, sự thâm nhập canxi qua màng plasma là điều thiết yếu cho việc điều chỉnh một loạt các phản ứng sinh lý quan trọng bao gồm tiết dịch, phiên mã gen và sự phát triển của tế bào. Trong nhiều năm, các con đường thâm nhập canxi ở các tế bào không kích thích vẫn chưa được biết đến, bất chấp tầm quan trọng của chúng trong các trạng thái sinh lý và bệnh lý. Công việc rất cẩn thận và sâu sắc của James Putney đã dẫn đến việc thiết lập mô hình thâm nhập canxi có kho dự trữ (nhập canxi điều khiển bởi kho), trong đó quá trình làm rỗng các kho canxi trong tế bào dẫn đến sự kích hoạt của các kênh thâm nhập canxi. Bằng chứng rõ ràng cho mô hình cách mạng này đã được cung cấp bởi các nghiên cứu ghim màng do Markus Hoth và Reinhold Penner thực hiện, những người đã chứng minh rằng việc làm rỗng kho dự trữ đã kích hoạt một loại kênh canxi mới gọi là kênh CRAC. Bài tổng quan này cung cấp một cái nhìn lịch sử về sự phát triển của thâm nhập canxi điều khiển bởi kho và cách thức ghim màng đã giải quyết một tranh cãi kéo dài trong sinh lý học tế bào. Bài tổng quan cũng thảo luận về các ý tưởng hiện tại liên quan đến cách thức làm rỗng kho mở các kênh trong màng plasma.
Từ khóa
#kênh canxi #chất dẫn truyền thần kinh #sinh lý học tế bào #thâm nhập canxi #mô hình dự trữTài liệu tham khảo
Carafoli E (2002) Calcium signalling: a tale for all seasons. Proc Natl Acad Sci USA 99:1115–1122
Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325
Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529
Hille B (2002) Ionic channels of excitable membranes. Sinauer Associates
Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555
Parekh AB, Penner R (1997) Store-operated calcium influx. Physiol Rev 77:901–930
Parekh AB, Putney JWJ (2005) Store-operated calcium channels. Physiol Rev 85:757–810
Putney JWJ (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12
Putney JWJ (1976) Biphasic modulation of potassium release in rat parotid gland by carbachol and phenylephrine. J Pharmacol Exp Ther 198:375–384
Putney JWJ (1977) Muscarinic, alpha-adrenergic and peptide receptors regulate the same calcium influx sites in the parotid gland. J Physiol (Lond) 268:139–149
Casteels R, Droogmans G (1981) Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells of rabbit ear artery. J Physiol (Lond) 317:263–279
Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescent properties. J Biol Chem 260:3440–3450
Thastrup O, Dawson AP, Scharff O, Foder B, Cullen PJ, Drobak BK, Bjerrum PJ, Christensen SB, Hanley MR (1989) Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. Agents Actions 27:17–23
Takemura H, Hughes AR, Thastrup O, Putney JWJ (1989) Activation of calcium entry by the tumour promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J Biol Chem 264:12266–12271
Maruyama Y, Petersen OH (1982) Cholecystokinin activation of single channel currents is mediated by internal messenger in pancreatic acinar cells. Nature 300:61–63
Irvine RF (1990) Quantal Ca2+ release and the control of Ca2+ entry by inositol phosphates—a possible mechanism. FEBS Lett 263:3–5
Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a non-mitochondrial intracellular store in pancreatic acinar cells. Nature 306:67–69
Berridge MJ, Brown KD, Irvine RF, Heslop JP (1985) Phosphoinositides and cell proliferation. J Cell Sci (Suppl 3):187–189
Penner R, Matthews GR, Neher E (1988) Regulation of calcium influx by second messengers in rat mast cells. Nature 334:499–504
Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356
Hoth M, Penner R (1993) Calcium release-activated calcium current in rat mast cells. J Physiol (Lond) 465:359–386
Fierro L, Parekh AB (2000) Substantial depletion of the intracellular Ca2+ stores is required for macroscopic activation of the Ca2+ release-activated Ca2+ current in rat basophilic leukaemia cells. J Physiol (Lond) 522:247–257
Fierro L, Parekh AB (1999) On the characterisation of the mechanism underlying passive activation of the Ca2+ release-activated Ca2+ current ICRAC in rat basophilic leukaemia cells. J Physiol (Lond) 520:407–416
Hofer A, Fasolato C, Pozzan T (1998) Capacitative Ca2+ entry is closely linked to the filling state of internal Ca2+ stores: a study using simultaneous measurements of ICRAC and intraluminal [Ca2+]. J Cell Biol 140:325–334
Randriamampita C, Tsien RY (1993) Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature 364:809–814
Putney JWJ (1997) Capacitative calcium entry. Landes Bioscience, Austin
Bird GSJ, Bian X, Putney JW (1995) Calcium entry signal? Nature 373:481–482
Gilon P, Bird GSJ, Bian X, Yakel JL, Putney JW (1995) The Ca2+ mobilizing actions of a jurkat cell extract on mammalian cells and Xenopus laevis oocytes. J Biol Chem 270:8050–8055
Csutora P, Su Z, Kim HY, Bugrim A, Cunningham KW, Nuccitelli R, Keizer JE, Hanley MR, Blalock JE, Marchase RB (1999) Calcium influx factor is synthesized by yeast and mammalian cells depleted of organellar calcium stores. Proc Natl Acad Sci USA 96:121–126
Trepakova ES, Csutora P, Hunton DL, Marchase RB, Cohen RA, Bolotina, VM (2000) Calcium influx factor directly activates store-operated cation channels in vascular smooth muscle cells. J Biol Chem 275:26158–26163
Smani T, Zakharov SI, Csutora P, Leno E, Trepakova ES, Bolotina VM (2004) A novel mechanism for the store-operated calcium influx pathway. Nat Cell Biol 6:113–120
Smani T, Zakharov SI, Leno E, Csutora P, Trepakova ES, Bolotina VM (2003) Ca2+-independent phospholipase A2 is a novel determinant of store-operated Ca2+ entry. J Biol Chem 278:11909–11915
Su Z, Csutora P, Hunton RL, Shoemaker RB, Marchase RB, Blalock JE (2001) A store-operated nonselective cation channel in lymphocytes is activated directly by Ca2+ influx factor and diacylglycerol. Am J Physiol Cell Physiol 280:C1284–C1292
Zweifach A, Lewis RS (1993) Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci USA 90:6295–6299
Yao Y, Ferrer-Montiel AV, Montal M, Tsien RY (1999) Activation of store-operated Ca2+ current in Xenopus oocytes requires SNAP-25 but not a diffusible messenger. Cell 98:475–485
Alderton JM, Ahmed SA, Smith LA, Steinhardt RA (2000) Evidence for a vesicle-mediated maintenance of store-operated calcium channels in a human embryonic kidney cell line. Cell Calcium 28:161–166
Scott TT, Furuta W, Trimble WS, Grinstein S (2003) Activation of store-operated calcium channels: Assessment of the role of SNARE-mediated vesicular transport. J Biol Chem 278:30534–30539
Bakowski D, Burgoyne RD, Parekh AB (2003) Activation of the store-operated calcium current ICRAC can be dissociated from plasmalemmal vesicular fusion in RBL-1 cells. J Physiol (Lond) 553:387–393
Berridge MJ (1995) Capacitative calcium entry. Biochem J 312:1–11
Patterson RL, Van Rossum DL, Gill DL (1999) Store-operated Ca2+ entry: evidence for a secretion-like coupling model. Cell 98:487–499
Rosado JA, Jenner S, Sage SO (2000) A role for the actin cytoskeleton in the initiation and maintenance of store-mediated calcium entry in human platelets. Evidence for conformational coupling. J Biol Chem 275:7527–7533
Bakowski D, Glitsch, Parekh AB (2001) An examination of the secretion-like coupling model for the activation of the Ca2+ release-activated Ca2+ current ICRAC in RBL-1 cells. J Physiol (Lond) 532:55–71
Venkatachalam K, Van Rossum D, Patterson RL, Ma H-T, Gill DL (2002) The cellular and molecular basis of store-operated calcium entry. Nat Cell Biol 4:E263–E272
Ma HT, Patterson RL, Van Rossum DB, Birnbaumer L, Mikoshiba K, Gill DL (2000) Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 287:1647–1651
Prakriya M, Lewis RS (2001) Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J Physiol (Lond) 536:3–19
Broad LM, Braun F-J, Lievremont J-P, Bird GSJ, Kurosaki T, Putney JW Jr (2001) Role of the phospholipase C-inositol 1,4,5-trisphosphate pathway in calcium release-activated calcium current and capacitative calcium entry. J Biol Chem 276:15945–15952
Sugawara H, Kurosaki M, Takata M, Kurosaki T (1997) Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J 16:3078–3088
Ma H-T, Venkatachalam K, Li HS, Montell C, Kurosaki T, Patterson RL, Gill DL (2001) Assessment of the role of the inositol 1,4,5-trisphosphate receptor in the activation of transient receptor potential channels and store-operated Ca2+ entry channels. J Biol Chem 276:18888–18896
Kiselyov K, Shin MD, Shcheynikov N, Kurosaki T, Muallem S (2001) Regulation of Ca2+-release-activated Ca2+ current (Icrac) by ryanodine receptors in inositol 1,4,5-trisphosphate-receptor-deficient DT40 cells. Biochem J 360:17–22
Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445
Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a calcium sensor that activates CRAC channels and migrates from the calcium store to the plasma membrane. Nature 437:902–905
Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a calcium sensor essential for calcium-store-depletion-triggered calcium infux. Curr Biol 15:1235–1241
Spassova MA, Soboloff J, He L-P, Dziadek MA, Gill DL (2006) STIM1 has a plasma membrane role in activation of store-operated calcium channels. Proc Natl Acad Sci USA 103:4040–4045
Feske S, Prakriya M, Rao A, Lewis RS (2005) A severe defect in CRAC calcium channel activation and altered potassium channel gating in T cells from immunodeficient patients. J Exp Med 202:651–662
Fasolato C, Hoth M, Penner R (1993) A GTP-dependent step in the activation mechanism of capacitative calcium influx. J Biol Chem 268:20737–20740
Parekh AB, Penner R (1995) Depletion-activated calcium current is inhibited by protein kinase in RBL-2H3 cells. Proc Natl Acad Sci USA 92:7907–7911
Rychkov GH, Brereton M, Harland ML, Barritt GJ (2001) Plasma membrane Ca2+ release-activated Ca2+ channels with a high selectivity for Ca2+ identified by patch-clamp recording in rat liver cells. Hepatology 33:938–947
Hsu SF, O’Connell PJ, Klyachko VA, Badminton MN, Thomson AW, Jackson MB, Clapham DE, Ahern GF (2001) Fundamental Ca2+ signalling mechanisms in mouse dendritic cells: CRAC is the major Ca2+ entry pathway. J Immunol 166:6126–6133
Somasundaram B, Norman JC, Mahaut-Smith MP (1995) Primaquine, an inhibitor of vesicular transport, blocks the calcium release-activated calcium current in rat megakaryocytes. Biochem J 309:725–729
Delles C, Haller T, Dietl P (1995) A highly calcium-selective cation current activated by intracellular calcium release in MDCK cells. J Physiol (Lond) 486:557–569
Vaca L, Kunze DL (1994) Depletion of intracellular Ca2+ stores activates a Ca2+-selective channel in vascular endothelium. Am J Physiol Cell Physiol 267:C920–C925
Zaznacheyeva E, Zubov A, Nikolaev A, Alexeenko V, Bezprozvanny I, Mozhayeva GN (2000) Plasma membrane calcium channels in human carcinoma A431 cells are functionally coupled to inositol 1,4,5-trisphosphate receptor-phosphatidylinositol 4,5-bisphosphate complexes. J Biol Chem 275:4561–4564
Lueckhoff A, Clapham DE (1994) Calcium channels activated by depletion of internal calcium stores in A431 cells. Biophys J 67:177–182
Trepakova ES, Gericke M, Hirakawa Y, Weisbrod RM, Cohen RA, Bolotina VM (2001) Properties of a native cation channel activated by Ca2+ store depletion in vascular smooth muscle cells. J Biol Chem 276:7782–7790
Albert AP, Large WA (2002) Activation of store-operated channels by noradrenaline via protein kinase C in rabbit portal vein myocytes. J Physiol (Lond) 544:113–125
Golovina VA, Platoshyn O, Bailey CL, Wang J, Limsuwan A, Sweeney M, Rubin LJ, Yuan JX (2001) Upregulated TRP and enhanced capacitative Ca2+ entry in human pulmonary artery myocytes during proliferation. Am J Physiol 280:H746–H755
Ma R, Pluznick J, Kudlacek PE, Sansom SC (2001) Protein kinase C activates store-operated calcium channels in human glomerular mesangial cells. J Biol Chem 276:25759–25765
Krause E, Pfeiffer F, Schmid A, Schulz I (1996) Depletion of intracellular calcium stores activates a calcium conducting nonselective cation current in mouse pancreatic acinar cells. J Biol Chem 271:32523–32528
Mignen O, Shuttleworth TJ (2000) IARC, a novel arachidonate-regulated, noncapacitative Ca2+ entry channel. J Biol Chem 275:9114–9119
Mignen O, Thompson JL, Yule DI, Shuttleworth TJ (2005) Agonist activation of arachidonate-regulated Ca2+-selective (ARC) channels in murine parotid and pancreatic acinar cells. J Physiol (Lond) 564:791–801
Lueckhoff A, Clapham DE (1992) Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca2+-permeable channel. Nature 355:356–358
Von Tscharner V, Prod’hom B, Baggiolini M, Reuter H (1986) Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. Nature 324:369–372
Vaca L, Kunze DL (1995) IP3-activated Ca2+ channels in the plasma membrane of cultured vascular endothelial cells. Am J Physiol Cell Physiol 269:C733–C738
Mozhayeva GN, Naumov AP, Kuryshev YA (1990) Inositol 1,4,5-trisphosphate activates two types of Ca2+-permeable channels in human carcinoma cells. FEBS Lett 277:233–234
Mozhayeva GN, Naumov AP, Kuryshev YA (1990) Calcium-permeable channels activated by guanine nucleotide-dependent mechanism in human carcinoma cells. FEBS Lett 277:227–229
Wu S, Moore TM, Brough GH, Whitt SR, Chinkers M, Li M, Stevens T (2000) Cyclic nucleotide-gated channels mediate membrane depolarisation following activation of store-operated calcium entry in endothelial cells. J Biol Chem 275:18887–188896
Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature (in press)
Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 Is a plasma membrane protein essential for store-operated Ca2+ entry. Science (in press)