On the Stability Problem of Differential Equations in the Sense of Ulam
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alsina, C., Ger, R.: On some inequalities and stability results related to the exponential function. J. Inequal. Appl. 2, 373–380 (1998)
Aoki, T.: On the stability of the linear transformations in Banach spaces. J. Math. Soc. Jpn. 2, 64–66 (1950)
Bellman, R.: Stability Theory of Differential Equations. Mc.Graw-Hill Book Company, New York City (1953)
Bojor, F.: Note on the stability of first order linear differential equations. Opusc. Math. 32, 67–74 (2012)
Borelli, C.: On Hyers–Ulam stability of Hosszú’s functional equation. Results Math. 26(3), 221–224 (1994). https://doi.org/10.1007/BF03323041
Brzdek, J., Popa, D., Xu, B.: The Hyers–Ulam stability of nonlinear recurrences. J. Math. Anal. Appl. 335, 443–449 (2007)
Cadariu, L., Radu, V.: Fixed point methods for the generalized stability of functional equations on a single variable. Fixed Point Theory A. Article ID749392, 15 p. (2008)
de Oliveira, E.C., Sousa, J.V.C.: Ulam–Hyers–Rassias stability for a class of fractional integro-differential equations. Results Math. 73(3), 111 (2018). https://doi.org/10.1007/s00025-018-0872-z
Diaz, J.B., Margolis, B.: A fixed point theorem of alternative, for contractions on a genarilazed complete metric space. Bull. Am. Math. Soc. 74, 305–309 (2003)
Forti, G.L.: Comments on the core of the direct method for proving Hyers–Ulam stability of functional equations. J. Math. Anal. Appl. 295, 127–133 (2004)
Hale, J.: Ordinary Differential Equations. Kreieger Publishing Company, Malabar (1969)
Hsu, S.B.: Ordinary Differential Equations with Applications. Cheslea Publishing Company, Hartford (2006)
Hyers, D.H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A. 27, 222–224 (1941)
Jung, S.M.: Hyers–Ulam–Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001)
Jung, S.M.: A fixed point approach to the stability of differential equations $$y^{\prime }=f(x, y)$$. Bull. Malays. Math. Sci. Soc. 33(1), 47–56 (2010)
Lu, G., Park, C.: Hyers–Ulam stability of general Jensen-type mappings in Banach algebras. Results Math. 66(3), 385–404 (2014). https://doi.org/10.1007/s00025-014-0383-5
Miura, T., Miyajima, S., Takahasi, S.H.: A characterization of Hyers–Ulam stability of first order linear differential operators. J. Math. Anal. Appl. 286, 136–146 (2003)
Miura, T., Miyajima, S., Takahasi, S.H.: Hyers–Ulam stability of linear differential operator with constant coefficients. Math. Nachr. 258, 90–96 (2003)
Obloza, M.: Hyers–Ulam stability of the linear differential equations. Rocznik. Nauk. Dydakt. Prace. Mat. 13, 259–270 (1993)
Obloza, M.: Connections between Hyers and Lyapunov stability of the ordinary differential equations. Rocznik. Nauk. Dydakt. Prace. Mat. 14, 141–146 (1997)
Petru, T.P., Petruşel, A., Yao, J.C.: Ulam–Hyers stability for operatorial equations and inclusions via nonself operators. Taiwan. J. Math. 15, 2195–2212 (2011)
Popa, D.: Hyers–Ulam–Rassias stability of a linear recurrence. J. Math. Anal. Appl. 309, 591–597 (2005)
Popa, D., Pugna, G.: Hyers–Ulam stability of Euler’s differential equation. Results Math. 69(3), 317–325 (2016). https://doi.org/10.1007/s00025-015-0465-z
Rassias, T.: On the stability of linear mappings in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)
Rassias, T.: Handbook of Functional Equations: Stability Theory. Springer, Berlin (1953)
Shen, Y.: The Ulam stability of first order linear dynamic equations on time scales. Results Math. 72(4), 1881–1895 (2017). https://doi.org/10.1007/s00025-017-0725-1
Takahasi, S.H., Miura, T., Miyajima, S.: The Hyers–Ulam stability constants of first order linear differential operators. Bull. Korean Math. Soc. 39, 309–315 (2002)
Tunç, C., Biçer, E.: Hyers–Ulam–Rassias stability for a first order functional differential equation. J. Math. Fund. Sci. 47(2), 143–153 (2015)
Ulam, S.M.: A Collection of Mathematical Problems. Interscience, Woburn (1960)
Vrabie, I.I.: Co-Semigrups and Applications. Elseiver, Amsterdam (2003)