On the Riemann-Hilbert factorization problem for positive definite functions
Tóm tắt
We give several general theorems concerning positive definite solutions of Riemann-Hilbert problems on the real line. Furthermore, as an example, we apply our theory to the characteristic function of a class of Lévy processes and we find the distribution of their extrema at a given stopping time.
Tài liệu tham khảo
Bailey, B., Madych, W.: Cardinal sine series, oversampling, and periodic distributions. In: Proceedings of the American Mathematical Society (2015)
Baxter, G., Donsker, M.D.: On the distribution of the supremum functional for processes with stationary independent increments. Trans Am Math Soc 85, 73–87 (1957)
Bertoin, J.: Lévy processes. Cambridge Tracts in Mathematics, vol. 121, pp. x+265. Cambridge University Press, Cambridge (1996)
Bochner, S.: Monotone funktionen, stieltjessche integrale und harmonische analyse. Math Ann 108(1), 378–410 (1933)
Butzer, P.L., Higgins, J.R., Stens, R.L.: Classical and approximate sampling theorems; studies in the \(L^{p} (\mathbb{R})\) and the uniform norm. J Approx Theory 137(2), 250–263 (2005)
Gakhov, F.D.: Boundary value problems, Translation edited by I. N. Sneddon, Pergamon Press, Oxford; Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, pp. xix+561 (1966)
Hackmann, D., Kuznetsov, A.: A note on the series representation for the density of the supremum of a stable process. Electron Commun Probab 18, 1–5 (2013)
Hilbert, D.: Mathematische probleme. Göttinger Nachrichten, pp. 253–297 (1900) (see also a reprinting in Archiv der Mathematik und Physik, 3rd ser., vol. 1, pp. 44–63 and pp. 213–237 (1901))
Hopf, E., Wiener, N.: Über eine klasse singulärer integralgleichungen. Sitzungsberichte der Preuß. Akademie der Wissenschaften, Phys.-math. Klasse, 1931 XXXI 1 (1932)
Kucerovsky, D., Najafabadi, A.T.P.: An approximation for a subclass of the Riemann-Hilbert problems. IMA J Appl Math 74(4), 533–547 (2009)
McLeod, R.M.: Mean value theorems for vector valued functions. In: Proceedings of the Edinburgh Mathematical Society (Series 2) 14(03), 197–209 (1965)
Pecherskii, E.A., Rogozin, B.A.: On joint distributions of random variables associated with fluctuations of a process with independent increments. Theory Probab & Its Appl 14(3), 410–423 (1969)
Poussin, C.J.d.L.V.: Sur la convergence des formules d’interpolation entre ordonnées équidistantes. Hayez (1908)
Riemann, B.: Grundlagen fur eine allgemeine theorie der functionen einer veranderlichen comnplexen grosse. Gottingen, 1851. Gesammelte Werke, 1892
Rogozin, B.A.: On distributions of functionals related to boundary problems for processes with independent increments. Theory Probab & Its Appl 11(4), 580–591 (1966)
Rybicki, G.B.: Dawson’s integral and the sampling theorem. Comp Phys 3(2), 85–87 (1989)
Schoenberg, I.J.: Metric spaces and positive definite functions. Trans Am Math Soc 44(3), 522–536 (1938)
Schur, J.: Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielen veränderlichen. J für die reine Angewandte Math 140, 1–28 (1911)
Shannon, C.E.: Communication in the presence of noise. Proc IRE 37(1), 10–21 (1949)
Splettstößer, W.: Some extensions of the sampling theorem. In: Butzer P. L. & Sz.-Nagy B. (eds.) Linear spaces and approximation (Proc. Conf., Math. Res. Inst., Oberwolfach, 1977), International Series of Numerical Mathematics, vol. 40, pp. 615–628. Birkhäuser, Basel (1978)
Splettstößer, W.: 75 Years Aliasing Error in the Sampling Theorem. Lehrstuhl A für Math., Rheinisch-Westfälische Techn. Hochsch. (1983)
Von Neumann, J., Schoenberg, I.J.: Fourier integrals and metric geometry. Trans Am Math Soc 50(2), 226–251 (1941)
Whittaker, E.T.: Xviii.–On the functions which are represented by the expansions of the interpolation-theory. In: Proceedings of the Royal Society of Edinburgh 35, 181–194 (1915)