On the Riemann-Hilbert factorization problem for positive definite functions

Positivity - Tập 20 - Trang 743-754 - 2015
Dan Kučerovský1, Amir T. P. Najafabadi2, Aydin Sarraf1
1Department of Mathematics, University of New Brunswick, Fredericton, Canada
2Department of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran

Tóm tắt

We give several general theorems concerning positive definite solutions of Riemann-Hilbert problems on the real line. Furthermore, as an example, we apply our theory to the characteristic function of a class of Lévy processes and we find the distribution of their extrema at a given stopping time.

Tài liệu tham khảo

Bailey, B., Madych, W.: Cardinal sine series, oversampling, and periodic distributions. In: Proceedings of the American Mathematical Society (2015) Baxter, G., Donsker, M.D.: On the distribution of the supremum functional for processes with stationary independent increments. Trans Am Math Soc 85, 73–87 (1957) Bertoin, J.: Lévy processes. Cambridge Tracts in Mathematics, vol. 121, pp. x+265. Cambridge University Press, Cambridge (1996) Bochner, S.: Monotone funktionen, stieltjessche integrale und harmonische analyse. Math Ann 108(1), 378–410 (1933) Butzer, P.L., Higgins, J.R., Stens, R.L.: Classical and approximate sampling theorems; studies in the \(L^{p} (\mathbb{R})\) and the uniform norm. J Approx Theory 137(2), 250–263 (2005) Gakhov, F.D.: Boundary value problems, Translation edited by I. N. Sneddon, Pergamon Press, Oxford; Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, pp. xix+561 (1966) Hackmann, D., Kuznetsov, A.: A note on the series representation for the density of the supremum of a stable process. Electron Commun Probab 18, 1–5 (2013) Hilbert, D.: Mathematische probleme. Göttinger Nachrichten, pp. 253–297 (1900) (see also a reprinting in Archiv der Mathematik und Physik, 3rd ser., vol. 1, pp. 44–63 and pp. 213–237 (1901)) Hopf, E., Wiener, N.: Über eine klasse singulärer integralgleichungen. Sitzungsberichte der Preuß. Akademie der Wissenschaften, Phys.-math. Klasse, 1931 XXXI 1 (1932) Kucerovsky, D., Najafabadi, A.T.P.: An approximation for a subclass of the Riemann-Hilbert problems. IMA J Appl Math 74(4), 533–547 (2009) McLeod, R.M.: Mean value theorems for vector valued functions. In: Proceedings of the Edinburgh Mathematical Society (Series 2) 14(03), 197–209 (1965) Pecherskii, E.A., Rogozin, B.A.: On joint distributions of random variables associated with fluctuations of a process with independent increments. Theory Probab & Its Appl 14(3), 410–423 (1969) Poussin, C.J.d.L.V.: Sur la convergence des formules d’interpolation entre ordonnées équidistantes. Hayez (1908) Riemann, B.: Grundlagen fur eine allgemeine theorie der functionen einer veranderlichen comnplexen grosse. Gottingen, 1851. Gesammelte Werke, 1892 Rogozin, B.A.: On distributions of functionals related to boundary problems for processes with independent increments. Theory Probab & Its Appl 11(4), 580–591 (1966) Rybicki, G.B.: Dawson’s integral and the sampling theorem. Comp Phys 3(2), 85–87 (1989) Schoenberg, I.J.: Metric spaces and positive definite functions. Trans Am Math Soc 44(3), 522–536 (1938) Schur, J.: Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielen veränderlichen. J für die reine Angewandte Math 140, 1–28 (1911) Shannon, C.E.: Communication in the presence of noise. Proc IRE 37(1), 10–21 (1949) Splettstößer, W.: Some extensions of the sampling theorem. In: Butzer P. L. & Sz.-Nagy B. (eds.) Linear spaces and approximation (Proc. Conf., Math. Res. Inst., Oberwolfach, 1977), International Series of Numerical Mathematics, vol. 40, pp. 615–628. Birkhäuser, Basel (1978) Splettstößer, W.: 75 Years Aliasing Error in the Sampling Theorem. Lehrstuhl A für Math., Rheinisch-Westfälische Techn. Hochsch. (1983) Von Neumann, J., Schoenberg, I.J.: Fourier integrals and metric geometry. Trans Am Math Soc 50(2), 226–251 (1941) Whittaker, E.T.: Xviii.–On the functions which are represented by the expansions of the interpolation-theory. In: Proceedings of the Royal Society of Edinburgh 35, 181–194 (1915)