On the Physics and Atomic Mechanisms of Molecular Hydrogen Intercalation into Graphite Nanofibers

Pleiades Publishing Ltd - Tập 114 - Trang 337-340 - 2021
Yu. S. Nechaev1, E. A. Denisov2, N. A. Shurygina1, A. O. Cheretaeva3, E. K. Kostikova4, S. Yu. Davydov5
1Bardin Central Research Institute of Iron and Steel Industry, Moscow, Russia
2St. Petersburg State University, St. Petersburg, Russia
3Research Institute of Progressive Technologies, Togliatti State University, Togliatti, Russia
4Institute of Applied Mathematical Research, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
5Ioffe Institute, St. Petersburg, Russia

Tóm tắt

The fundamental experimental data obtained in [I.O. Bashkin et al., JETP Lett. 79, 226 (2004)] on three states of hydrogen corresponding to physical sorption (state 1), chemisorption (state 2), and intercalation (state 3) in graphite nanofibers subjected to hydrogenation in H2 at a pressure of 9 GPa and a temperature of 753 K (with subsequent quenching), which led to a hydrogen content of up to 6.3 wt %, have been analyzed in detail using an effective method for processing thermal desorption spectra of hydrogen. In particular, attention is paid to the physics and atomic mechanisms of intercalation of specific molecular hydrogen (state 3) in graphite nanofibers, which is slightly more stable than chemisorbed hydrogen (state 2), and to comparison with the results of analysis and interpretation of the unique data obtained in [C. Park et al., J. Phys. Chem. B 103,10572 (1999)] on the “super” hydrogen storage in the know-how activated graphite nanofibers.

Tài liệu tham khảo

I. O. Bashkin, V. E. Antonov, A. V. Bazhenov, I. K. Bdikin, D. N. Borisenko, E. P. Krinichnaya, A. P. Moravskii, A. I. Kharkunov, Yu. M. Shul’ga, Yu. A. Osip’yan, and E. G. Ponyatovskii, JETP Lett. 79, 226 (2004). Yu. M. Shul’ga, I. O. Bashkin, A. V. Krestinin, V. M. Martynenko, G. I. Zvereva, I. V. Kondrat’eva, Yu. A. Osip’yan, and E. G. Ponyatovskii, JETP Lett. 80, 752 (2004). K. P. Meletov, A. A. Maksimov, I. I. Tartakovskii, I. O. Bashkin, V. V. Shestakov, A. V. Krestinin, Yu. M. Shulga, K. S. Andrikopoulos, J. Arvanitidis, D. Chistofilos, and G. A. Kourouklis, Chem. Phys. Lett. 433, 335 (2007). M. Brzhezinskaya, V. Shamko, G. Yalovega, A. Krestinin, I. Bashkin, and E. Bogoslavskaja, J. Electron Spectrosc. Rel. Phenom. 196, 99 (2014). M. Brzhezinskaya, E. A. Belenkov, V. A. Greshnyakov, G. E. Yalovega, and I. O. Bashkin, J. Alloys Compd. 792, 713 (2019). Yu. S. Nechaev, Phys. Usp. 49, 563 (2006). Yu. S. Nechaev and T. N. Veziroglu, Int. J. Phys. Sci. 10, 54 (2015). Yu. S. Nechaev, N. M. Alexandrova, A. O. Cheretaeva, V. L. Kuznetsov, A. Öchsner, E. A. Kostikova, and Yu. V. Zaika, Int. J. Hydrogen Energy 45, 25030 (2020). Yu. V. Zaika, E. K. Kostikova, and Yu. S. Nechaev, Tech. Phys. 66, 210 (2021). Yu. S. Nechaev, N. M. Alexandrova, N. A. Shurygina, A. O. Cheretaeva, E. A. Denisov, and E. K. Kostikova, Bull. Russ. Acad. Sci.: Phys. 85, 701 (2021). Yu. S. Nechaev, N. M. Alexandrova, N. A. Shurygina, A. O. Cheretaeva, E. K. Kostikova, and A. Öchsner, J. Nucl. Mater. 535, 152162 (2020). X. Zhao, R. A. Outlaw, J. J. Wang, M. Y. Zhu, G. D. Smith, and B. J. Holloway, J. Chem. Phys. 124, 194704 (2006). I. Nayyar, B. Ginovska, A. Karkamkar, T. Gennett, and T. Autrey, J. Carbon Res. 6, 1 (2020). S. Yu. Davydov, Phys. Solid State 60, 812 (2018). Z. H. Aitken and R. Huang, J. Appl. Phys. 107, 123531 (2010). W. Wang, S. Dai, X. Li, D. J. Srolovitz, and Q. Zheng, Nat. Commun. 6, 7853 (2015). Yu. S. Nechaev, N. M. Alexandrova, N. A. Shurygina, and A. O. Cheretaeva, Nanotubes Carbon Nanostruct. 28, 233 (2020). Yu. S. Nechaev, E. A. Denisov, N. M. Aleksandrova, N. A. Shurygina, A. O. Cheretaeva, E. K. Kostikova, and A. Öchsner, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 17 (2022, in press). Yu. S. Nechaev, E. A. Denisov, A. O. Cheretaeva, Yu. V. Gavrilov, and S. V. Verzhichinskaya, in Proceedings of the 15th International Conference on Advanced Nanostructures ACNS’2021, St.-Petersburg (2021), p. 131. Yu. S. Nechaev, in Proceedings of the 7th International Conference on Catalysis, Chemical Engineering and Technology, Magnus Group, Tokyo (2021), p. 38. C. Park, P. E. Anderson, A. Chambers, C. D. Tan, R. Hidalgo, and N. M. Rodriguez, J. Phys. Chem. B 103,10572 (1999). R. T. K. Baker, Encyclopedia of Materials: Science and Technology (Elsevier, Amsterdam, 2005), p. 932. B. K. Gupta, R. S. Tiwari, and O. N. Srivastava, J. Alloys Compd. 381, 301 (2004). A. A. Artyukh and L. A. Chernozatonskii, JETP Lett. 109, 472 (2019). V. A. Demin, D. G. Kvashnin, P. Vancso, G. Mark, and L. A. Chernozatonskii, JETP Lett. 112, 305 (2020). A. I. Podlivaev, JETP Lett. 110, 691 (2019). A. I. Podlivaev, JETP Lett. 111, 613 (2020). A. I. Podlivaev, K. S. Grishakov, K. P. Katin, and M. M. Maslov, JETP Lett. 113, 169 (2021).