On the Geometry of the Set of Symmetric Matrices with Repeated Eigenvalues
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agrachev, A.A.: Spaces of symmetric operators with multiple ground states. Funktsional. Anal. i Prilozhen. 45(4), 1–15 (2011)
Agrachev, A.A., Lerario, A.: Systems of quadratic inequalities. Proc. Lond. Math. Soc. (3) 105(3), 622–660 (2012)
Arnold, V.I.: Topological properties of eigen oscillations in mathematical physics. Tr. Mat. Inst. Steklova 273(Sovremennye Problemy Matematiki), 30–40 (2011)
Arnold, V.I.: Modes and quasimodes. Funkcional. Anal. i Priložen. 6(2), 12–20 (1972)
Arnold, V.I.: Remarks on eigenvalues and eigenvectors of Hermitian matrices, Berry phase, adiabatic connections and quantum Hall effect. Sel. Math. (N.S.) 1(1), 1–19 (1995)
Beltrán, C., Kozhasov, Kh.: The real polynomial eigenvalue problem is well conditioned on the average (2018). arXiv:1802.07493 [math.NA]
Beltrán, C.: Estimates on the condition number of random rank-deficient matrices. IMA J. Numer. Anal. 31(1), 25–39 (2011)
Ben Arous, G., Bourgade, P.: Extreme gaps between eigenvalues of random matrices. Ann. Probab. 41(4), 2648–2681 (2013)
Bik, A., Draisma, J.: A note on ED degrees of group-stable subvarieties in polar representations (2017). arXiv:1708.07696 [math.AG]
Breiding, P., Kozhasov, Kh., Lerario, A.: Random spectrahedra (2017). arXiv:1711.08253 [math.AG]
Bürgisser, P., Cucker, F.: Condition: The Geometry of Numerical Algorithms, Grundlehren der Mathematischen Wissenschaften, vol. 349. Springer, Heidelberg (2013)
Demmel, J.W.: The probability that a numerical analysis problem is difficult. Math. Comput. 50(182), 449–480 (1988)
Draisma, J., Horobet, E., Ottaviani, G., Sturmfels, B., Thomas, R.R.: The Euclidean distance degree of an algebraic variety. Found. Comput. Math. 16(1), 99–149 (2016)
Drusvyatskiy, D., Lee, H.-L., Ottaviani, G., Thomas, R.R.: The Euclidean distance degree of orthogonally invariant matrix varieties. Isr. J. Math. 221(1), 291–316 (2017)
Edelman, A., Kostlan, E.: How many zeros of a random polynomial are real? Bull. Am. Math. Soc. (N.S.) 32(1), 1–37 (1995)
Edelman, A., Kostlan, E., Shub, M.: How many eigenvalues of a random matrix are real? J. Am. Math. Soc. 7(1), 247–267 (1994)
Gradshteyn, I., Ryzhik, I.: Table of integrals, series, and products. Elsevier/Academic Press, Amsterdam (2015)
Helmke, U., Shayman, M.A.: Critical points of matrix least squares distance functions. Linear Algebra Appl. 215, 1–19 (1995)
Howard, R.: The kinematic formula in Riemannian homogeneous spaces. Mem. Am. Math. Soc 106(509), vi+69 (1993)
Ilyushechkin, N.V.: Some identities for elements of a symmetric matrix. J. Math. Sci. 129(4), 3994–4008 (2005)
Kostlan, E.: On the expected number of real roots of a system of random polynomial equations. In: Foundations of computational mathematics (Hong Kong, 2000), pp 149–188. World Sci. Publ., River Edge (2002)
Lerario, A., Lundberg, E.: Gap probabilities and Betti numbers of a random intersection of quadrics. Discrete Comput. Geom. 55(2), 462–496 (2016)
Mehta, M .L.: Random matrices, 3rd edn. Elsevier, Amsterdam (2004)
Muirhead, R.J.: Aspects of Multivariate Statistical Theory. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1982)
Nguyen, H., Tao, T., Vu, V.: Random matrices: tail bounds for gaps between eigenvalues. Probab. Theory Relat. Fields 167(3–4), 777–816 (2017)
Parlett, B.N.: The (matrix) discriminant as a determinant. Linear Algebra Appl. 355(1), 85–101 (2002)
Shapiro, M., Vainshtein, A.: Stratification of Hermitian matrices and the Alexander mapping. C. R. Acad. Sci. 321(12), 1599–1604 (1995)
Shub, M., Smale, S.: Complexity of Bezout’s theorem. III. Condition number and packing. J. Complex. 9(1), 4–14 (1993) (Festschrift for Joseph F. Traub, Part I. (1993))
Shub, M., Smale, S.: Complexity of Bezout’s theorem. II. Volumes and probabilities. In: Computational algebraic geometry (Nice, 1992), Progr. Math., vol. 109, pp. 267–285. Birkhäuser Boston, Boston (1993)
Shub, M., Smale, S.: Complexity of Bézout’s theorem. I. Geometric aspects. J. Am. Math. Soc 6(2), 459–501 (1993)
Spanier, J., Oldham, K.B., Myland, J.: An atlas of functions. Springer, Berlin (2000)
Tao, T.: Topics in random matrix theory, Graduate Studies in Mathematics, vol. 132. American Mathematical Society, Providence (2012)