On the Extremal Theory of Continued Fractions

Alina Bazarova1, István Berkes1, Lajos Horváth2
1Institute of Statistics, Graz University of Technology, Graz, Austria
2Department of Mathematics, University of Utah, Salt Lake City, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arov, D.Z., Bobrov, A.A.: The extreme terms of a sample and their role in the sum of independent variables. Theor. Probab. Appl. 5, 377–396 (1960)

Bickel, P.J., Wichura, M.J.: Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Stat. 42, 1656–1670 (1971)

Billingsley, P.: Ergodic Theory and Information. Wiley, New York (1965)

Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

Bradley, R.: Introduction to Strong Mixing Conditions, vol. I. Kendrick Press, Heber City (2007)

Csörgő, S., Horváth, L., Mason, D.: What portion of the sample makes a partial sum asymptotically stable or normal? Z. Wahrschein. verw. Gebiete 72, 1–16 (1986)

Csörgő, S., Simons, G.: A strong law of large numbers for trimmed sums, with applications to generalized St. Petersburg games. Stat. Probab. Lett. 26, 65–73 (1996)

Darling, D.: The influence of the maximum term in the addition of independent random variables. Trans. Am. Math. Soc. 73, 95–107 (1952)

Diamond, H., Vaaler, J.: Estimates for partial sums of continued fraction partial quotients. Pac. J. Math. 122, 73–82 (1986)

Doeblin, W.: Remarques sur la théorie métrique des fractions continues. Compos. Math. 7, 353–371 (1940)

Galambos, J.: The distribution of the largest coefficient in continued fraction expansions. Q. J. Math. Oxf. Ser. 23, 147–151 (1972)

Galambos, J.: An iterated logarithm type theorem for the largest coefficient in continued fractions. Acta Arith. 25, 359–364 (1973/74)

Gordin, M.I., Reznik, M.H.: The law of the iterated logarithm for the denominators of continued fractions. Vestn. Leningr. Univ. 25, 28–33 (1970). (In Russian)

Heinrich, L.: Rates of convergence in stable limit theorems for sums of exponentially $$\psi $$ ψ - mixing random variables with an application to metric theory of continued fractions. Math. Nachr. 131, 149–165 (1987)

Ibragimov, I.A.: A theorem from the metric theory of continued fractions. Vestn. Leningr. Univ. 1, 13–24 (1960). (In Russian)

Iosifescu, M.: A Poisson law for $$\psi $$ ψ -mixing sequences establishing the truth of a Doeblin’s statement. Rev. Roum. Math. Pures Appl. 22, 1441–1447 (1977)

Iosifescu, M.: A survey of the metric theory of continued fractions, fifty years after Doeblin’s 1940 paper. In: Grigelionis, B., et al. (eds.) Probability Theory and Mathematical Statistics, vol. 1, pp. 550–572. Mokslas, Vilnius (1990)

Khinchin, A.J.: Metrische Kettenbruchprobleme. Compos. Math. 1, 361–382 (1935)

Kusmin, R.: Sur un problème de Gauss. Atti Congr. Int. Bol. 6, 83–89 (1928)

Leadbetter, M., Rootzén, H.: Extremal theory for stochastic processes. Ann. Probab. 16, 431–478 (1988)

Lévy, P.: Sur les lois de probabilité dont dépendent les quotients complets et incomplets d’une fraction continue. Bull. Sci. Math. Fr. 57, 178–194 (1929)

Lévy, P.: Fractions continues aléatoires. Rend. Circ. Mat. Palermo 1, 170–208 (1952)

Philipp, W.: Some metrical theorems in number theory II. Duke Math. J. 37, 447–458 (1970)

Philipp, W.: A conjecture of Erdős on continued fractions. Acta Arith. 28, 379–386 (1975/76)

Philipp, W.: Limit theorems for partial quotients of continued fractions. Mon. Math. 105, 195–206 (1988)

Philipp, W., Stackelberg, O.: Zwei Grenzwertssätze für Kettenbrüche. Math. Ann. 181, 152–156 (1969)

Samur, J.: On some limit theorems for continued fractions. Trans. Am. Math. Soc. 316, 53–79 (1989)

Samur, J.: Some remarks on a probability limit theorem for continued fractions. Trans. Am. Math. Soc. 348, 1411–1428 (1996)

Stackelberg, O.P.: On the law of the iterated logarithm for continued fractions. Duke Math. J. 33, 801–819 (1966)

Szewczak, Z.S.: On limit theorems for continued fractions. J. Theor. Probab. 22, 239–255 (2009)

Utev, S.A.: On the central limit theorem for $$\varphi $$ φ -mixing arrays of random variables. Theory Probab. Appl. 35, 131–139 (1990)

Vardi, I.: The St. Petersburg game and continued fractions. C. R. Acad. Sci. Paris Ser. I Math. 324, 913–918 (1997)