Về các mô hình thống kê trên cây siêu
Tóm tắt
Từ khóa
#mô hình thống kê #lý thuyết trường lượng tử #cây siêu #ma trận chuyển tiếp #thống kê ngẫu nhiênTài liệu tham khảo
P. Dorey and R. Tateo, Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations, J. Phys. A 32 (1999) L419 [hep-th/9812211] [INSPIRE].
V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Spectral determinants for Schrödinger equation and Q operators of conformal field theory, J. Statist. Phys. 102 (2001) 567 [hep-th/9812247] [INSPIRE].
J. Suzuki, Anharmonic oscillators, spectral determinant and short exact sequence of U(q) (affine sl(2)), J. Phys. A 32 (1999) L183 [hep-th/9902053] [INSPIRE].
P. Dorey, C. Dunning and R. Tateo, The ODE/IM Correspondence, J. Phys. A 40 (2007) R205 [hep-th/0703066] [INSPIRE].
V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, On nonequilibrium states in QFT model with boundary interaction, Nucl. Phys. B 549 (1999) 529 [hep-th/9812091] [INSPIRE].
M. Aganagic, M.C.N. Cheng, R. Dijkgraaf, D. Krefl and C. Vafa, Quantum Geometry of Refined Topological Strings, JHEP 11 (2012) 019 [arXiv:1105.0630] [INSPIRE].
M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño and C. Vafa, Topological strings and integrable hierarchies, Commun. Math. Phys. 261 (2006) 451 [hep-th/0312085] [INSPIRE].
M. Kardar, G. Parisi and Y.-C. Zhang, Dynamic Scaling of Growing Interfaces, Phys. Rev. Lett. 56 (1986) 889 [INSPIRE].
T. Halpin-Healy and Y.-C. Zhang, Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics, Phys. Rept. 254 (1995) 215.
M. Prähofer and H. Spohn, Universal Distributions for Growth Processes in 1+1 Dimensions and Random Matrices, Phys. Rev. Lett. 84 (2000) 4882.
M. Prähofer and H. Spohn, Scale Invariance of the PNG Droplet and the Airy Process, J. Stat. Phys. 108 (2002) 1071.
C.A. Tracy and H. Widom, Level spacing distributions and the Airy kernel, Commun. Math. Phys. 159 (1994) 151 [hep-th/9211141] [INSPIRE].
K. Bulycheva, A. Gorsky and S. Nechaev, Critical behavior in topological ensembles, Phys. Rev. D 92 (2015) 105006 [arXiv:1409.3350] [INSPIRE].
A. Maritan, Random walk and the ideal chain problem on self-similar structures, Phys. Rev. Lett. 62 (1989) 2845.
F.F. Ternovsky, I.A. Nyrkova and A.R. Khokhlov, Statistics of an ideal polymer chain near the bifurcation region of a narrow tube, Physica A 184 (1992) 342.
Z. Burda, J. Duda, J.-M. Luck and B. Waclaw, Localization of the Maximal Entropy Random Walk, Phys. Rev. Lett. 102 (2009) 160602.
S.K. Nechaev, M.V. Tamm and O.V. Valba, Path counting on simple graphs: from escape to localization, J. Stat. Mech. 2017 (2017) 053301.
M. Kornyik and G. Michaletzky, Wigner matrices, the moments of roots of Hermite polynomials and the semicircle law, J. Approx. Theor. 211 (2016) 29.
D. Dominici, Asymptotic analysis of the Hermite polynomials from their differential-difference equation, J. Diff. Eq. Appl. 13 (2007) 1115.
L. Carlitz and J. Riordan, Two element lattice permutation numbers and their q-generalization, Duke J. Math. 31 (1964) 371.
T. Prellberg and R. Brak, Critical exponents from nonlinear functional equations for partially directed cluster models, J. Stat. Phys. 78 (1995) 701.
C. Richard, A.J. Guttmann and I. Jensen, Scaling function and universal amplitude combinations for selfavoiding polygons, J. Phys. A 34 (2001) L495 [cond-mat/0107329] [INSPIRE].
I.M. Lifshitz, Theory of Fluctuation Levels in Disordered Systems, Sov. Phys. JETP 26 (1968) 462.
I.M. Lifshitz, S.A. Gredeskul and L.A. Pastur, Introduction to the theory of disordered systems, Wiley-Interscience, (1988).
T.M. Nieuwenhuizen, Trapping and Lifshitz Tails in Random Media, Self-Attracting Polymers, and the Number of Distinct Sites Visited: A Renormalized Instanton Approach in Three Dimensions, Phys. Rev. Lett. 62 (1989) 357.
E. Gorsky, q,t-Catalan numbers and knot homology. Zeta Functions in Algebra and Geometry, Contemp. Math. 566 (2012) 213 [arXiv:1003.0916].
S. Nechaev, K. Polovnikov, A. Valov, to be published.
B.L. Altshuler, Y. Gefen, A. Kamenev and L.S. Levitov, Quasiparticle Lifetime in a Finite System: A Nonperturbative Approach, Phys. Rev. Lett. 78 (1997) 2803 [INSPIRE].
R. Abou-Chacra, D.J. Thouless and P.W. Anderson, A selfconsistent theory of localization, J. Phys. C 6 (1973) 1734.
D. Basko, I. Aleiner and B. Altshuler, Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states, Annals Phys. 321 (2006) 1126.
O. Salberger, T. Udagawa, Z. Zhang, H. Katsura, I. Klich and V. Korepin, Deformed Fredkin Spin Chain with Extensive Entanglement, J. Stat. Mech. 1706 (2017) 063103 [arXiv:1611.04983] [INSPIRE].
X. Chen, E. Fradkin and W. Witczak-Krempa, Gapless quantum spin chains: multiple dynamics and conformal wavefunctions, J. Phys. A 50 (2017) 464002 [arXiv:1707.02317] [INSPIRE].