On quantum ensembles of quantum classifiers

Amira Abbas1, Maria Schuld1, Francesco Petruccione2
1Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
2Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, KwaZulu-Natal, 4001, South Africa

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bellman R (1966) Dynamic programming. Science 153(3731):34–37

Benedetti M, Realpe-Gómez J, Perdomo-Ortiz A (2018) Quantum-assisted Helmholtz machines: a quantum–classical deep learning framework for industrial datasets in near-term devices. Quant Sci Technol 3(3):034007

Beyer K, Goldstein J, Ramkrishnan R, Shaft U (1999) When is “nearest neighbor” meaningful?. In: International conference on database theory. Springer, pp 217–235

Bhattacharya RN (1977) Refinements of the multidimensional central limit theorem and applications. Ann Probab 5(1):1–27

Casella G, Robert CP, Wells MT, et al. (2004) Generalized accept-reject sampling schemes. In: A Festschrift for Herman Rubin. Institute of Mathematical Statistics, pp 342–347

Chandra A, Yao X (2006) Evolving hybrid ensembles of learning machines for better generalisation. Neurocomputing 69(7–9):686–700

Deutsch D, Jozsa R (1992) Rapid solution of problems by quantum computation. Proc R Soc London Series A 439:553–558

Farhi E, Goldstone J, Gutmann S (2014) A quantum approximate optimization algorithm. arXiv:1411.4028

Friedrich KO, et al. (1989) A Berry-Esseen bound for functions of independent random variables. Ann Stat 17(1):170–183

Gulde S, Riebe M, Lancaster GPT, Becher C, Eschner J, Häffner H, Schmidt-Kaler F, Chuang IL, Blatt R (2003) Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer. Nature 421(6918):48

Hansen LK, Salamon P (1990) Neural network ensembles. IEEE Trans Pattern Anal Mach Intell 10:993–1001

Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM (2019) Supervised learning with quantum-enhanced feature spaces. Nature 567(7747):209

Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian model averaging: a tutorial. Stat Sci, 382–401

Klartag B (2010) High-dimensional distributions with convexity properties. Preprint, http://www.math.tau.ac.il/klartagb/papers/euro.pdf

Kübler JM, Muandet K, Schölkopf B (2019) Quantum mean embedding of probability distributions. arXiv:1905.13526

Madigan D, Raftery AE (1994) Model selection and accounting for model uncertainty in graphical models using Occam’s window. J Am Stat Assoc 89(428):1535–1546

Nielsen MA, Chuang I (2002) Quantum computation and quantum information

Peruzzo A, McClean J, Shadbolt P, Yung M-H, Zhou X-Q, Love PJ, Aspuru-Guzik A, O’brien JL (2014) A variational eigenvalue solver on a photonic quantum processor. Nat Commun 5:4213

Romero J, Olson JP, Aspuru-Guzik A (2017) Quantum autoencoders for efficient compression of quantum data. Quant Sci Technol 2(4):045001

Schapire RE (2003) The boosting approach to machine learning: an overview. In: Nonlinear estimation and classification. Springer, pp 149–171

Schuld M, Killoran N (2019) Quantum machine learning in feature Hilbert spaces. Phys Revi Lett 122 (4):040504

Schuld M, Petruccione F (2018) Quantum ensembles of quantum classifiers. Sci Rep 8(1):2772

Schuld M, Petruccione F (2018a) Supervised learning with quantum computers

Schuld M, Petruccione F (2018b) Supervised learning with quantum computers, vol 17. Springer

Shaft U, Ramakrishnan R (2006) Theory of nearest neighbors indexability. ACM Trans Datab Syst (TODS) 31(3):814–838

Simon DR (1997) On the power of quantum computation. SIAM J Comput 26(5):1474–1483

van Zwet R (1984) A Berry-Esseen bound for symmetric statistics. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 66(3):425–440

Verdon G, Broughton M, Biamonte J (2017) A quantum algorithm to train neural networks using low-depth circuits. arXiv:1712.05304

Zhang C, Ma Y (2012) Ensemble machine learning: methods and applications. Springer

Zimek A, Schubert E, Kriegel H-P (2012) A survey on unsupervised outlier detection in high-dimensional numerical data. Statist Ana Data Min: ASA Data Sci J 5(5):363–387