Về các điều kiện tối ưu và định lý đối ngẫu cho các nghiệm xấp xỉ của vấn đề tối ưu hóa vô hạn không trơn

Positivity - 2023
Thanh-Hung Pham1
1Faculty of Pedagogy, Faculty of Social Sciences and Humanities, Kien Giang University, Chau Thanh, Vietnam

Tóm tắt

Trong bài báo này, chúng tôi đề cập đến các nghiệm tối ưu gần đúng $$\varepsilon $$ cho một vấn đề tối ưu hóa vô hạn không trơn xét theo khái niệm phụ vi phân Mordukhovich/giới hạn. Các kết quả đạt được cải thiện hoặc bao gồm một số kết quả gần đây đã biết. Một số ví dụ minh họa cũng được cung cấp.

Từ khóa

#Tối ưu hóa vô hạn #Phụ vi phân Mordukhovich #Nghiệm xấp xỉ #Điều kiện tối ưu #Định lý đối ngẫu

Tài liệu tham khảo

Chuong, T.D., Huy, N.Q., Yao, J.-C.: Subdifferentials of marginal functions in semi-infinite programming. SIAM J. Optim. 20, 1462–1477 (2009) Chuong, T.D., Kim, D.S.: Nonsmooth semi-infinite multiobjective optimization problems. J. Optim. Theory Appl. 160, 748–762 (2014) Chuong, T.D., Yao, J.-C.: Isolated and proper efficiencies in semi-infinite vector optimization problems. J. Optim. Theory Appl. 162, 447–462 (2014) Chuong, T.D., Kim, D.S.: Approximate solutions of multiobjective optimization problems. Positivity 20, 187–207 (2016) Chuong, T.D.: Nondifferentiable fractional semi-infinite multiobjective optimization problems. Oper. Res. Lett. 44, 260–266 (2016) Chuong, T.D., Kim, D.S.: Normal regularity for the feasible set of semi-infinite multiobjective optimization problems with applications. Ann. Oper. Res. 267, 81–99 (2018) Correa, R., López, M.A., Pérez-Aros, P.: Necessary and sufficient optimality conditions in DC Semi-infinite programming. SIAM J. Optim. 31, 837–865 (2021) Dinh, N., Goberna, M.A., López, M.A., Son, T.Q.: New Farkas-type constraint qualifications in convex infinite programming. ESAIM Control Optim. Calc. Var. 13, 580–597 (2007) Dinh, N., Mordukhovich, B.S., Nghia, T.T.A.: Qualification and optimality conditions for DC programs with infinite constraints. Acta Math. Vietnam 34, 123–153 (2009) Fakhara, M., Mahyarinia, M.R., Zafarani, J.: On approximate solutions for nonsmooth robust multiobjective optimization problems. Optimization 68, 1653–1683 (2019) Hantoute, A., López, M.A.: A complete characterization of the subdifferential set of the supremum of an arbitrary family of convex functions. J. Convex Anal. 15, 831–858 (2008) Hantoute, A., López, M.A., Zălinescu, C.: Subdifferential calculus rules in convex analysis: a unifying approach via pointwise supremum functions. SIAM J. Optim. 19, 863–882 (2008) Jiao, L.G., Dinh, B.V., Kim, D.S., Yoon, M.: Mixed type duality for a class of multiple objective optimization problems with an infinite number of constraints. J. Nonlinear Convex Anal. 21, 49–61 (2020) Jiao, L.G., Kim, D.S., Zhou, Y.Y.: Quasi \(\varepsilon \)-solution in a semi-infinite programming problem with locally Lipschitz data. Optim. Lett. 15, 1759–1772 (2021) Kanzi, N.: Constraint qualifications in semi-infinite systems and their applications in nonsmooth semi-infinite problems with mixed constraints. SIAM J. Optim. 24, 559–572 (2014) Kanzi, N., Nobakhtian, S.: Optimality conditions for nonsmooth semi-infinite multiobjective programming. Optim. Lett. 8, 1517–1528 (2014) Kanzi, N.: On strong KKT optimality conditions for multiobjective semi-infinite programming problems with Lipschitzian data. Optim. Lett. 9, 1121–1129 (2015) Khanh, P.Q., Tung, N.M.: On the Mangasarian–Fromovitz constraint qualification and Karush–Kuhn–Tucker conditions in nonsmooth semi-infinite multiobjective programming. Optim. Lett. 14, 2055–2072 (2020) Khantree, C., Wangkeeree, R.: On quasi approximate solutions for nonsmooth robust semiinfinite optimization problems. Carpath. J. Math. 35, 417–426 (2019) Kim, D.S., Son, T.Q.: An approach to \(\varepsilon \)-duality theorems for nonconvex semi-infinite multiobjective optimization problems. Taiwan J. Math. 22, 1261–1287 (2018) Li, C., Ng, K.F., Pong, T.K.: Constraint qualifications for convex inequality systems with applications in constrained optimization. SIAM J. Optim. 19, 163–187 (2008) Long, X.J., Xiao, Y.B., Huang, N.J.: Optimality conditions of approximate solutions for nonsmooth semi-infinite programming problems. J. Oper. Res. Soc. China 6, 289–299 (2018) Long, X.J., Liu, J., Huang, N.J.: Characterizing the solution set for nonconvex semi-infinite programs involving tangential subdifferentials. Numer. Funct. Anal. Optim. 42, 279–297 (2021) Loridan, P.: Necessary conditions for \(\varepsilon \)-optimality. Optimality and stability in mathematical programming. Math. Program. Study 19, 140–152 (1982) Loridan, P.: \(\varepsilon \)-Solutions in vector minimization problems. J. Optim. Theory Appl. 43, 265–276 (1984) Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I: Basic Theory. Springer, Berlin (2006) Mordukhovich, B.S., Nghia, T.T.A.: Subdifferentials of nonconvex supremum functions and their applications to semi-infinite and infinite programs with Lipschitzian data. SIAM J. Optim. 23, 406–431 (2013) Mordukhovich, B.S., Nghia, T.T.A.: Nonsmooth cone-constrained optimization with applications to semi-infinite programming. Math. Oper. Res. 39, 301–324 (2014) Mordukhovich, B.S.: Variational Analysis and Applications. Springer Monographs in Mathematics, Springer, Cham (2018) Mordukhovich, B.S., Pérez-Aros, P.: New extremal principles with applications to stochastic and semi-infinite programming. Math. Program. 189, 527–553 (2021) Pérez-Aros, P.: Formulae for the conjugate and the subdifferential of the supremum function. J. Optim. Theory Appl. 180, 397–427 (2019) Pérez-Aros, P.: Subdifferential formulae for the supremum of an arbitrary family of functions. SIAM J. Optim. 29, 1714–1743 (2019) Shitkovskaya, T., Hong, Z., Kim, D.S., Piao, G.R.: Approximate necessary optimality in fractional semi-infinite multiobjective optimization. J. Nonlinear Convex Anal. 21, 195–204 (2020) Son, T.Q., Strodiot, J.J., Nguyen, V.H.: \(\varepsilon \)-Optimality and \(\varepsilon \)-Lagrangian duality for a nonconvex programming problem with an infinite number of constraints. J. Optim. Theory Appl. 141, 389–409 (2009) Son, T.Q., Kim, D.S.: \(\varepsilon \)-Mixed duality for nonconvex multiobjective programs with an infinite number of constraints. J. Glob. Optim. 57, 447–465 (2013) Son, T.Q., Tuyen, N.V., Wen, C.F.: Optimality conditions for approximate Pareto solutions of a nonsmooth vector optimization problem with an infinite number of constraints. Acta Math. Vietnam 45, 435–448 (2020) Sun, X.K., Teo, K.L., Zheng, J., Liu, L.: Robust approximate optimal solutions for nonlinear semi-infinite programming with uncertainty. Optimization 69, 2020–2109 (2020) Tung, L.T.: Strong Karush-Kuhn-Tucker optimality conditions for multiobjective semi-infinite programming via tangential subdifferential. RAIRO Oper. Res. 52, 1019–1041 (2018) Tung, L.T.: Karush-Kuhn-Tucker optimality conditions and duality for multiobjective semi-infinite programming via tangential subdifferentials. Numer. Funct. Anal. Optim. 41, 659–684 (2020) Tung, L.T.: Strong Karush-Kuhn-Tucker optimality conditions for Borwein properly efficient solutions of multiobjective semi-infinite programming. Bull. Braz. Math. Soc. 52, 1–22 (2021)