On normed spaces with the Wigner Property

Springer Science and Business Media LLC - Tập 11 - Trang 523-539 - 2019
Ruidong Wang1, Dariusz Bugajewski2
1College of Science, Tianjin University of Technology, Tianjin, China
2Department of Mathematics and Computer Science, Adam Mickiewicz University Poznań, Poznań, Poland

Tóm tắt

The aim of this paper is to generalize the Wigner Theorem to real normed spaces. A normed space is said to have the Wigner Property if the Wigner Theorem holds for it. We prove that every two-dimensional real normed space has the Wigner Property. We also study the Wigner Property of real normed spaces of dimension at least three. It is also shown that strictly convex real normed spaces possess the Wigner Property.

Tài liệu tham khảo

Alonso, J.: Uniqueness properties of isosceles orthogonality in normed linear spaces. Ann. Sci. Math. Qué. 18, 25–38 (1994) Bourgain, J.: Real isomorphic complex Banach spaces need not be complex isomorphic. Proc. Am. Math. Soc. 96, 221–226 (1986) Bargmann, V.: Note on Wigner’s theorem on symmetry operations. J. Math. Phys. 5, 862–868 (1964) Bracci, L., Morchio, G., Strocchi, F.: Wigner’s theorem on symmetries in indefinite metric spaces. Commun. Math. Phys. 41, 289–299 (1975) Chevalier, G.: Wigner’s theorem and its generalizations. In: Engesser, K., Gabbay, D.M., Lehmann, D. (eds.) Handbook of Quantum Logic and Quantum Structure: Quantum Structures, pp. 429–475. Elsevier, Amsterdam (2007) Chmieliński, J., Ilišević, D., Moslehian, M.S., Sadeghi, G.: Perturbation of the Wigner equation in inner product \(C^*\)-modules. J. Math. Phys. 49, 033519 (2008) Faure, C.A.: An elementary proof of the fundamental theorem of projective geometry. Geometriae Dedicata 90, 145–151 (2002) Freese, R.W., Diminnie, C.R., Andalafte, E.Z.: Angle bisectors in normed linear spaces. Math. Nachr. 131(1), 167–173 (1987) Gehér, Gy.P.: On n-norm presevers and the Aleksandrov conservative \(n\)-distance problem. Aequat. Math. 91(5), 933–943 (2017) Gehér, Gy.P.: An elementary proof for the non-bijective version of Wigner’s theorem. Phys. Lett. A. 378, 2054–2057 (2014) Gehér, Gy.P., Šemrl, P.: Isometries of Grassmann spaces. J. Funct. Anal. 270, 1585–1601 (2016) Györy, M.: A new proof of Wigner’s theorem. Rep. Math. Phys. 54, 159–167 (2004) Holmes, R.B.: Geometric Functional Analysis and Its Applications. Springer, Berlin (1975) Molnár, L.: Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn’s version of Wigner’s theorem. J. Funct. Anal. 194(2), 248–262 (2002) Mazur, S., Ulam, S.: Sur les transformationes isométriques despaces vectoriels normés. C. R. Math. Acad. Sci. Paris. 194, 946–948 (1932) Pankov, M.: Wigner’s type theorem in terms of linear operators which send projections of a fixed rank to projections of other fixed rank. J. Math. Anal. Appl. 474(2), 1238–1249 (2019) Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1972) Sharma, C.S., Almeida, D.L.: A direct proof of Wigner’s theorem on maps which preserve transition probabilities between pure states of quantum systems. Ann. Phys. 197(2), 300–309 (1990) Simon, R., Mukunda, N., Chaturvedi, S., Srinivasan, V.: Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics. Phys. Lett. A. 372(46), 6847–6852 (2008) Tan, D., Huang, X.: Phase-isometries on real normed spaces. (Preprint) Turnšek, A.: A variant of Wigner’s functional equation. Aequat. Math. 89(4), 949–956 (2015) Uhlhorn, U.: Representation of symmetry transformations in quantum mechanics. Arkiv for Fysik 23(30), 307–340 (1962) Wigner, E.: Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren. Vieweg, Brunswick (1931)