On maximal acceleration and quantum acceleratum operator in quantum mechanics

Quantum Studies: Mathematics and Foundations - Tập 5 Số 4 - Trang 543-550 - 2018
Rami Ahmad El-Nabulsi1
1Athens Institute for Education and Research, Mathematics and Physics Divisions, 8 Valaoritou Street, Kolonaki, 10671 Athens, Greece

Tóm tắt

Từ khóa


Tài liệu tham khảo

Suykens, J.A.K.: Extending Newton’s law from nonlocal-in-time kinetic energy. Phys. Lett. A 373, 1201–1211 (2009)

Feynman, R.P.: Space-time approach to relativistic quantum mechanics. Rev. Mod. Phys. 20, 367–387 (1948)

El-Nabulsi, R.A.: Non-standard non-local-in-time Lagrangians in classical mechanics. Qual. Theor. Dyn. Syst. 13, 149–160 (2014)

El-Nabulsi, R.A.: Complex backward-forward derivative operator in non-local-in-time Lagrangians mechanics. Qual. Theor. Dyn. Syst. (2016). doi: 10.1007/s12346-016-0187-y

Li, Z.-Y., Fu, J.-L., Chen, L.-Q.: Euler–Lagrange equation from nonlocal-in-time kinetic energy of nonconservative system. Phys. Lett. A 374, 106–109 (2009)

Stecki, J.: On the kinetic equation nonlocal in time for the generalized self-diffusion process. J. Comput. Phys. 7, 547–553 (1971)

Gomis, J., Kamimura, K., Llosa, J.: Hamiltonian formalism for space-time noncommutative theories. Phys. Rev. D 63(4), 045003 (2001). (6 pages)

El-Nabulsi, R.A.: On nonlocal complexified Schrödinger equation and emergence of discrete quantum mechanics. Quant. Stud. Math. Found. 3, 327–335 (2016)

El-Nabulsi, R.A.: Generalized Klein–Gordon and Dirac equations from nonlocal kinetic energy approach. Zeitsch. Natur. A71(9), 817–821 (2016)

Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966)

Gordeziani, D.G.: On some initial conditions for parabolic equations. Reports of the enlarged session of the seminar of I. Vekua Inst. Appl. Math. 4, 57–60 (1989)

Gordeziani, D.G., Grigalashvili, Z.: Non-local problems in time for some equations of mathematical physics. Dokl. Semin. Inst. Prikl. Mat. im. I. N. Vekua 22, 108–114 (1993)

Gordeziani, D.G.: On nonlocal in time problems for Navier-Stokes equations. Rep. Sem. I. Vekua Inst. Appl. Math. 22, 22–27 (1993)

Hu, H., Hu, M.: Evidence of non-local physical, chemical and biological effects supports quantum. Neuro Quant 4(4), 291–306 (2006)

Cushman, J., Ginn, T.: Nonlocal dispersion in media with continuously evolving scales of heterogeneity. Transp. Por. Media 13, 123–128 (1993)

Carmichael, H.: An Open Systems Approach to Quantum Optics. Springer, New York (1991)

El-Nabulsi, R.: Nonlocal-in-time kinetic energy in nonconservative fractional systems, disordered dynamics, Jerk and Snap and oscillatory motions in the rotating fluid tube. Int. J. Nonlinear Mech. 93, 65–81 (2017)

Nottale, L.: Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity. World Scientific, Singapore (1993)

Pecknold, S., Lovejoy, S., Schertzer, D., Hooge, C., Malouin, J.F.: The simulation of universal multifractals. In: Perdang, J.M., Lejeune, A. (Eds.), Cellular automata: prospects in astronomy and astrophysics, pp. 228–267. World Scientific, Singapore (1993)

Grosse-Knetter, C.: Effective Lagrangians with higher-order derivatives. Phys. Rev. D 49, 6709–6719 (1994)

Deriglazov, A., Nersessian, A.: Rigid particle revisited: extrinsic curvature yields the Dirac equation. Phys. Lett. A 378, 1224–1227 (2014)

Chen, T.-J., Fasiello, M., Lim, E.A., Tolley, A.J.: Higher derivative theories with constraints: exorcising Ostrogradiski’s ghost. J. Cosmo. Astropart. Phys. 1302, 042–059 (2013)

Kamalov, T.: Classical and quantum-mechanical axioms with the higher time derivative formalism. J. Phys. Conf. Ser. 442, 012051 (2013). (6pages)

Kamalov, T.: Quantum corrections for Newton’s law of motion. arXiv:1612.06712

Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. Benjamin, Reading, MA (1978)

Rashid, M.S., Khalil, S.S.: Hamiltonian Description of Higher Order Lagrangians, IC/93/420. Miramare, Trieste (1993)

Sakurai, J.: Modern Quantum Mechanics. Addison-Wesley, Boston (1994)

Dirac, P.A.M.: Classical theory of radiating electrons. Proc. R. Soc. Lond. A167, 148–169 (1938)

Caianiello, E.R.: Is there a maximal acceleration. Lett. Nuovo Cimento 32, 65–70 (1981)

Pati, A.K.: A note on maximal acceleration. Europhys. Lett. 18(4), 285–289 (1992)

Papini, G.: Revisiting Caianiello’s maximal acceleration. Nuovo Cimento B117, 1325–1331 (2003)

Pati, A.K.: On the maximal acceleration and the maximal energy loss. Nuovo Cimento B107, 895–901 (1992)

Kiefer, C.: The semiclassical approximation to quantum gravity. In: Ehlers, J., Friedrich, H. (eds.), Canonical Gravity-From Classical to Quantum, pp. 170–212. Springer, Berlin (2005)

Sakho, I.: Relativistic theory of one-and two electron systems: valley of stability in the helium-like ions. J. Atom. Mol. Sci. 3, 23–40 (2012)

Eager, D., Pendrill, A.-M., Reistad, N.: Beyond velocity and acceleration: jerk, snap and higher derivative. Eur. J. Phys. 37, 065008 (2016). (11pages)

Garay, L.J.: Quantum gravity and minimum length. Int. J. Mod. Phys. A 10, 145–166 (1995)

Behrooz, K., Behzad, K.: Time-evaluation of the modified position and momentum operators in harmonic oscillator based on the Kempf algebra. Mod. J. Lang. Teachnol. Methods. 6, 085–090 (2016)