On edge singularity and eigenvectors of mixed graphs

Springer Science and Business Media LLC - Tập 24 Số 1 - Trang 139-146 - 2008
Yingying Tan1,2, Yi-Zheng Fan2
1Department of Mathematics and Physics, Anhui Institute of Architecture and Industry, Hefei, P. R. China
2School of Mathematics and Computation Sciences, Anhui University, Hefei, P. R. China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications, American Elsevier Publishing Co., New York, 1976

Grossman, J. W., Kulkarni, D. M., Schochetman, I. E.: Algebraic graph theory without orientations. Linear Algebra Appl., 212/213, 289–308 (1994)

Bapat, R. B., Grossman, J. W., Kulkarni, D. M.: Generalized matrix tree theorem for mixed graphs. Linear and Multilinear Algebra, 46, 299–312 (1999)

Merris, R.: Laplacian matrices of graphs: a survey. Linear Algebra Appl., 197/198, 143–176 (1998)

Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J., 23, 298–305 (1973)

Mohar, B.: Some applications of Laplacian eigenvalues of graphs, in: Graph Symmetry, (G. Hahn and G. Sabidussi Eds), Kluwer Academic Publishers, Dordrecht, 1997, 225–275

Chung, F. R. K.: Spectral Graph Theory, Conference Board of the Mathematical Science, No. 92, American Mathematical Society, Providence, RI, 1997

Guo, J. M., Tan, S. W.: A relation between the matching number and the Laplacian spectrum of a graph. Linear Algebra Appl., 325, 71–74 (2001)

Li, J. S., Pan, Y. L.: Upper bounds for the Laplacian graph eigenvalues. Acta Mathematica Sinica, English Series, 20(5), 803–806 (2004)

Zhang, X. D., Luo, R.: Non-bipartite graphs with third largest Laplacian eigenvalue less than three. Acta Mathematica Sinica, English Series, 22(3), 917–934 (2006)

Hou, Y. P.: Bounds for the least Laplacian eigenvalue of a signed graph. Acta Mathematica Sinica, English Series, 21(4), 955–960 (2005)

Zhang, X. D., Li, J. S.: The Laplacian spectrum of a mixed graph. Linear Algebra Appl., 353, 11–20 (2002)

Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory. Czechoslovak Math. J., 25, 619–633 (1975)

Kirkland, S., Fallat, S.: Perron components and algebraic connectivity for weighted graphs. Linear and Multilinear Algebra, 44, 131–148 (1998)

Bapat, R. B., Pati, S.: Algebraic Connectivity and the characteristic set of a graph. Linear and Multilinear Algebra, 45, 247–273 (1998)

Fan, Y. Z.: On the least eigenvalue of a unicyclic mixed graph. Linear and Multilinear Algebra, 53(2), 97–113 (2005)

Bapat, R. B., Grossman, J. W., Kulkarni, D. M.: Edge version of the matrix tree theorem for trees. Linear and Multilinear Algebra, 47, 217–229 (2000)

Zhang, X. D., Luo, R.: The Laplacian eigenvalues of mixed graphs. Linear Algebra Appl., 362, 109–119 (2003)

Fan, Y. Z.: On spectral integral variations of mixed graph. Linear Algebra Appl., 374, 307–316 (2003)