On discreteness of the Hopf equation
Tóm tắt
The principle aim of this essay is to illustrate how different phenomena is captured by different discretizations of the Hopf equation and general hyperbolic conservation laws. This includes dispersive schemes, shock capturing schemes as well as schemes for computing multi-valued solutions of the underlying equation. We introduce some model equations which describe the behavior of the discrete equation more accurate than the original equation. These model equations can either be conveniently discretized for producing novel numerical schemes or further analyzed to enrich the theory of nonlinear partial differential equations.
Tài liệu tham khảo
Ahmed, H., Liu, H. Formulation and analysis of alternating evolution (AE) schemes for hyperbolic conservation laws. (preprint)
Bianco, F., Puppo, G., Russo, G. High-order central schemes for hyperbolic systems of conservation laws. SIAM J. Sci. Comput., 21(1): 294–322, (1999) (electronic)
Bouchut, F. James, F. Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness. Comm. Partial Differential Equations, 24(11–12): 2173–2189 (1999)
Camassa, R., Holm, D.D. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett., 71: 1661–1664 (1993)
Chen, G.Q. Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics. III. Acta Math. Sci. (English Ed.), 6(1): 75–120 (1986)
Chen, G.Q., Liu, H.L. Formation of δ-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM J. Math. Anal., 34(4): 925–938 (2003)(electronic)
Chen, G.Q., Liu, H.L. Concentration and cavitation in solutions of the euler equations for nonisentropic fluids as the pressure vanishes. Phys. D., 189(1–2): 141–165 (2004)
Cheng, L.T., Liu, H.L., Osher, S. Computational high-frequency wave propagation using the level set method, with applications to the semi-classical limit of Schrödinger equations. Comm. Math. Sci., 1(3): 593–621 2003
Cheng, L.T., Osher, S., Kang, M., Shim, H., Tsai, Y.H. Reflection in a level set framework for geometric optics. Comput. Model Eng. Sci., 5(4): 347–360 (2004)
Cockburn, B., Shu, C.W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput., 16(3): 173–261 (2001)
Coclite, G.M., Karlsen, K.H. On the well-posedness of the degasperisprocesi equation. J. Funct. Anal., 233: 60–91 (2006)
Colella, P., Woodward, P.R. The piecewise parabolic method (ppm) for gas-dynamical simulations. J. Comput. Phys., 54(1): 174–201 (1984)
Courant, R., Hilbert, D. Methods of mathematical physics. Vol. II. John Wiley & Sons Inc., New York, 1989. Partial differential equations, Reprint of the 1962 original, A Wiley-Interscience Publication.
Courant, R., Isaacson, E., Rees, M. On the solution of nonlinear hyperbolic differential equations by finite differences. Comm. Pure. Appl. Math., 5:243–255 (1952)
Crandall, M.G., Lions, P.L. Two approximations of solutions of Hamilton-Jacobi equations. Math. Comp., 43(167): 1–19 (1984)
Degasperis, A., Procesi, M. Asymptotic integrability. In: Symmetry and perturbation theory. In Rome, pages 23–37, World Scientific, River Edge, NJ, 1999
Ding, X.Q., Chen, G.Q., Luo, P.Z. Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics. I, II. Acta Math. Sci., (English Ed.), 5(4): 415–472 (1985)
Ding, X.Q., Chen, G.Q., Luo, P.Z. Convergence of the Lax-Friedrichs scheme for the system of equations of isentropic gas dynamics. I. Acta Math. Sci., 7(4): 467–480 (1987) (in Chinese)
E, W., Rykov, Y.G., Sinai, Y.G. Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Comm. Math. Phys., 177(2): 349–380 (1996)
Engquist, B., Osher, S. Stable and entropy satisfying approximations for transonic flow calculations. Math. Comp., 34(149): 45–75 (1980)
Engquist, B., Runborg, O. Computational high frequency wave propagation. Acta Numer., 12: 181–266 (2003)
Evans, L.C. A geometric interpretation of the heat equation with multivalued initial data. SIAM J. Math. Anal., 27(4): 932–958 (1996)
Francesco, M.D., Fellner, K., Liu, H. A non-local conservation law with nonlinear ‘radiation’ inhomogeneity. To appear in J. Hyperbolic Differ. Equ., (2008)
Fuchssteiner, B., Fokas, A. Symplectic structures, their backlund transformations and hereditary symmetries. Physica D, 4(1): 47–66 (1881/82)
Giga, Y., Sato, M.H. A level set approach to semicontinuous viscosity solutions for Cauchy problems. Comm. Partial Differential Equations, 26(5–6): 813–839 (2001)
Godunov, S.K. A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb. (N.S.), 47(89): 271–306 (1959)
Goodman, J., Lax, P.D. On dispersive difference schemes. I. Comm. Pure Appl. Math., 41(5): 591–613 (1988)
Gosse, L., James, F. Convergence results for an inhomogeneous system arising in various high frequency approximations. Numer. Math., 90(4): 721–753 (2002)
Gottlieb, S., Shu, C.W., Tadmor, E. Strong stability-preserving high-order time discretization methods. SIAM Rev., 43(1): 89–112 (2001) (electronic)
Harten, A. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys., 49(3): 357–393 (1983)
Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R. Uniformly high-order accurate essentially nonoscillatory schemes. III. J. Comput. Phys., 71(2): 231–303 (1987)
Harten, A., Lax, P.D., van Leer, B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev., 25(1): 35–61 (1983)
Hou, T.Y., Lax, P.D. Dispersive approximations in fluid dynamics. Comm. Pure Appl. Math., 44(1): 1–40 (1991)
Jiang, G.S., Tadmor, E. Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput., 19(6): 1892–1917 (1998) (electronic)
Jin, S., Liu, H., Osher, S., Tsai, R. Computing multi-valued physical observables for the high frequency limit of symmetric hyperbolic systems. J. Comput. Phys., 210(2): 497–518 (2005)
Jin, S., Liu, H., Osher, S., Tsai, R. Computing multi-valued physical observables for the semiclassical limit of the Schrödinger equation. J. Comput. Phys., 205(1): 222–241 (2005)
Jin, S., Osher, S. A level set method for the computation of multivalued solutions to quasi-linear hyperbolic PDE’s and Hamilton-Jacobi equations. Comm. Math. Sci., 1(3): 575–591 (2003)
Kac, M., yon Moerbeke, P. On an explicitly soluble system of nonlinear differential equations related to certain toda lattices. Adv. in Math., 16: 160–169 (1975)
A. Kurganov, S. Noelle, and G. Petrova. Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput., 23(3): 707–740 (electronic), 2001.
Kurganov, A., Petrova, G. A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems. Numer. Math., 88(4): 683–729 (2001)
Kurganov, A., Tadmor, E. New high-resolution semi-discrete central schemes for Hamilton-Jacobi equations. J. Comput. Phys., 160(2): 720–742 (2000)
Lax, P., Levermore, C. The zero dispersion limit of the korteweg-de vries equation. Comm. Pure Appl. Math., 36(I, II, III): 253–290, 571-593, 809-829 (1983)
Lax, P.D. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Comm. Pure Appl. Math., 7: 159–193 (1954)
Lax, P.D. On dispersive difference schemes. Physica D, 18: 250–254 (1986)
Lax, P.D. Oscillatory solutions of partial differential and difference equations. In Mathematics Applied to Science (New Orleans, La., 1986), pages 155–170. Academic Press, Boston, MA, 1988
Lax, P.D., Wendroff, B. Difference schemes for hyperbolic equations with high order of accuracy. Comm. Pure Appl. Math., 17: 381–398 (1964)
Levermore, C.D., Liu, J.G. Large oscillations arising in a dispersive numerical scheme. Phys. D, 99(2–3): 191–216 (1996)
Levy, D., Puppo, G., Russo, G. Central WENO schemes for hyperbolic systems of conservation laws. M2AN Math. Model. Numer. Anal., 33(3): 547–571 (1999)
Liu, H. Wave breaking in a class of nonlocal dispersive wave equations. J. Nonlinear Math. Phys., 13(3): 441–466 (2006)
Liu, H. An alternating evolution approximation to systems of hyperbolic conservation laws. To appear in J. Hyperbolic Differ. Equ., (2008)
Liu, H., Cheng, L.T., Osher, S. A level set framework for tracking multi-valued solutions to nonlinear first-order equations, December 07, 2005 (electronically). J. Sci. Comp., 29(3): 353–373 (2006)
Liu, H., Osher, S., Tsai, R. Multi-valued solution and level set methods in computing high frequency wave propagation. Comm. in Comput. Phys., 1(5): 765–804 (2006)
Liu, H., Tadmor, E. Critical thresholds in a convolution model for nonlinear conservation laws. SIAM J. Math. Anal., 33(4): 930–945 (2001)
Liu, H., Wang, Z. Computing multi-valued velocity and electric fields for 1D Euler-Poisson equations. Appl. Numer. Math., 57(5–7): 821–836 (2007)
Liu, H., Wang, Z. A field-space-based level set method for computing multi-valued solutions to 1D Euler-Poisson equations. J. Comput. Phys., 225(1): 591–614 (2007)
Liu, H., Wang, Z. Superposition of multi-valued solutions in high frequency wave dynamics. J. Sci. Comput., publication online 3/11/2008
Liu, X.D., Osher, S., Chan, T. Weighted essentially non-oscillatory schemes. J. Comput. Phys., 115(1): 200–212 (1994)
Liu, X.D., Tadmor, E. Third order nonoscillatory central scheme for hyperbolic conservation laws. Numer. Math., 79(3): 397–425 (1998)
Liu, Y. Central schemes on overlapping cells. J. Comput. Phys., 209(1): 82–104 (2005)
Miller, P.D., Ercolani, N.M., Levermore, C.D. Modulation of multiphase waves in the presence of resonance. Phys. D, 92(1–2): 1–27 (1996)
Min, C. Local level set method in high dimension and codimension. J. Comput. Phys., 200(1): 368–382 (2004)
Moser, J. Three integrable Hamiltonian systems connected with isospectral deformations. In Surveys in applied mathematics (Proc. First Los Alamos Sympos. Math. in Natural Sci., Los Alamos, N.M., 1974), pages 235–258. Academic Press, New York, 1976
Nessyahu, H., Tadmor, E. Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys., 87(2): 408–463 (1990)
Osher, S. Riemann solvers, the entropy condition, and difference approximations. SIAM J. Numer. Anal., 21(2): 217–235 (1984)
Osher, S. A level set formulation for the solution of the Dirichlet problem for Hamilton-Jacobi equations. SIAM J. Math. Anal., 24(5): 1145–1152 (1993)
Osher, S., Cheng, L.T., Kang, M., Shim, H., Tsai, Y.H. Geometric optics in a phase-space-based level set and Eulerian framework. J. Comput. Phys., 179(2): 622–648 (2002)
Osher, S., Fedkiw, R. Level set methods and dynamic implicit surfaces. Springer-Verlag, New York, 2002
Osher, S., Sethian, J.A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79(1): 12–49 (1988)
Qian, J., Cheng, L.T., Osher. S. A level set-based Eulerian approach for anisotropic wave propagation. Wave Motion, 37(4): 365–379 2003
Sheng, W., Zhang, T. The Riemann problem for the transportation equations in gas dynamics. Mem. Amer. Math. Soc., 137(654): viii+77 (1999)
Shu, C.W., Osher, S. Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys., 77(2): 439–471 (1988)
Shu, C.W., Osher. S. Efficient implementation of essentially nonoscillatory shock-capturing schemes. II. J. Comput. Phys., 83(1): 32–78 1989
Tadmor, E. Numerical viscosity and the entropy condition for conservative difference schemes. Math. Comp., 43(168): 369–381 (1984)
Toda, M. Theory of nonlinear lattices. Vol.20 of Solid-State Sciences. Springer-Verlag, New York, Second edition, 1988
Tsai, Y.H.R., Giga, Y., Osher, S. A level set approach for computing discontinuous solutions of Hamilton-Jacobi equations. Math. Comp., 72(241): 159–181 (2003) (electronic)
Turner, C.V., Rosales, R.R. The small dispersion limit for a nonlinear semidiscrete system of equations. Stud. Appl. Math., 99(3): 205–254 (1997)
van Leer, B. Upwind differencing for hyperbolic systems of conservation laws. In Numerical methods for engineering, 1 (Paris, 1980), pages 137–149, Dunod, Paris, 1980
van Leer, B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1): 101–136 (1979) J. Comput. Phys., 135(2): 227-248 (1997) With an introduction by Ch. Hirsch, Commemoration of the 30th anniversary of J. Comput. Phys..
Venakides, S. The zero dispersion limit of the Korteweg-de Vries equation for initial potentials with non-trivial reflection coefficient. Comm. Pure Appl. Math., 38(2): 125–155 (1985)
Venakides, S., Deift, P., Oba, R. The Toda shock problem. Comm. Pure Appl. Math., 44(8–9): 1171–1242 (1991)
Von Neumann, J. Proposal and analysis of a new numerical method in the treatment of hydrodynamical shock problems. In Collected Works VI. Pergamon, New York, 1961
Wang, Z. Spectral volume method for conservation laws on unstructured grids: basic formulation. J. Comp. Phys., 178: 210–251 (2002)
Yin, Z. Global weak solutions for a new periodic integrable equation with peakon solutions. J. Funct. Anal., 212(1): 182–194 (2004)
N. Zabusky, N., Kruskal, M. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 15: 240–243 (1965)