On defining functions and cores for unbounded domains I
Tóm tắt
We show that every strictly pseudoconvex domain
$$\Omega $$
with smooth boundary in a complex manifold
$${\mathcal {M}}$$
admits a global defining function, i.e., a smooth plurisubharmonic function
$$\varphi :U \rightarrow {\mathbb {R}}$$
defined on an open neighbourhood
$$U \subset {\mathcal {M}}$$
of
$$\overline{\Omega }$$
such that
$$\Omega = \{\varphi < 0\}$$
,
$$d\varphi \ne 0$$
on
$$b\Omega $$
and
$$\varphi $$
is strictly plurisubharmonic near
$$b\Omega $$
. We then introduce the notion of the core
$${\mathfrak {c}}(\Omega )$$
of an arbitrary domain
$$\Omega \subset {\mathcal {M}}$$
as the set of all points where every smooth and bounded from above plurisubharmonic function on
$$\Omega $$
fails to be strictly plurisubharmonic. If
$$\Omega $$
is not relatively compact in
$${\mathcal {M}}$$
, then in general
$${\mathfrak {c}}(\Omega )$$
is nonempty, even in the case when
$${\mathcal {M}}$$
is Stein. It is shown that every strictly pseudoconvex domain
$$\Omega \subset {\mathcal {M}}$$
with smooth boundary admits a global defining function that is strictly plurisubharmonic precisely in the complement of
$${\mathfrak {c}}(\Omega )$$
. We then investigate properties of the core. In particular, we prove that the core is always 1-pseudoconcave.
Tài liệu tham khảo
Aupetit, B.: Geometry of pseudoconvex open sets and distributions of values of analytic multivalued functions. In: Proceedings of the Conference on “Banach Algebras and Several Complex Variables” in Honor of Charles Rickart, Contemporary Mathematics vol. 32. Yale University, New Haven, pp. 15–34 (June 1983)
Čirka, E.M.: Approximation by holomorphic functions on smooth manifolds in \(\mathbb{C}^n\), Math. USSR-Sb. 7, 95–114 (1969). English translation of. Mat. Sb. 78, 101–123 (1969)
Colţoiu, M.: Complete locally pluripolar sets. J. Reine Angew. Math. 412, 108–112 (1990)
Fornæss, J.E., Stensønes, B.: Lectures on Counterexamples in Several Complex Variables, Mathematical Notes 33. Princeton University Press, Princeton (1987)
Forster, O., Ramspott, K.J.: Singularitätenfreie analytische Raumkurven als vollständige Durchschnitte. Bayer. Akad. Wiss. Math.-Natur. Kl. S.-B. 1965 Abt. II, pp. 1–10 (1966)
Fritzsche, K., Grauert, H.: From Holomorphic Functions to Complex Manifolds, Graduate Texts in Mathematics, vol. 213. Springer, New York (2002)
Globevnik, J.: On Fatou-Bieberbach domains. Math. Z. 229, 91–106 (1998)
Grauert, H.: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146, 331–368 (1962)
Harvey, F.R., Lawson, H.B.: Geometric plurisubharmonicity and convexity: an introduction. Adv. Math. 230, 2428–2456 (2012)
Harvey, F.R., Lawson, H.B.: \(p\)-convexity, \(p\)-plurisubharmonicity and the Levi problem. Indiana Univ. Math. J. 62, 149–169 (2013)
Harz, T., Shcherbina, N., Tomassini, G.: Wermer type sets and extension of CR functions. Indiana Univ. Math. J. 61, 431–459 (2012)
Henkin, G.M., Leiterer, J.: Theory of Functions on Complex Manifolds, Monographs in Mathtematics 79. Birkhäuser, Basel (1984)
Henkin, G.M., Leiterer, J.: Andreotti-Grauert Theory by Integral Formulas, Progress in Mathematics 74. Birkhäuser, Basel (1988)
Jarnicki, J., Pflug, P.: Extension of Holomorphic Functions, De Gruyter Expositions in Mathematics 34. Walther de Gruyter, Berlin (2000)
Kazama, H.: Note on Stein neighborhoods of \(\mathbb{C}^k \times \mathbb{R}^1\). Math. Rep. Kyushu Univ. 14, 47–55 (1983). Univ. Math. J. 41, 515–532 (1992)
Morrow, J., Rossi, H.: Some theorems of algebraicity for complex spaces. J. Math. Soc. Jpn. 27, 167–183 (1975)
Riemenschneider, O.: Über den Flächeninhalt analytischer Mengen und die Erzeugung k-pseudokonvexer Gebiete. Invent. Math. 2, 307–331 (1967)
Rothstein, W.: Zur Theorie der analytischen Mannigfaltigkeiten im Raume von n komplexen Veränderlichen. Math. Ann. 129, 96–138 (1955)
Shcherbina, N.: On fibering into analytic curves of the common boundary of two domains of holomorphy. Math. USSR Izvestiya 21, 399–413 (1982); English translation of Izv. Akad. Nauk SSSR Ser. Mat. 46, 1106–1123 (1983)
Shcherbina, N., Tomassini, G.: The Dirichlet problem for Levi-flat graphs over unbounded domains. Int. Math. Res. Not. 1999, 111–151 (1999)
Słodkowski, Z.: Local maximum property and \(q\)-plurisubharmonic functions in uniform algebras. J. Math. Anal. Appl. 115, 105–130 (1986)
Słodkowski, Z., Tomassini, G.: Minimal kernels of weakly complete spaces. J. Funct. Anal. 210, 125–147 (2004). 18, 143–148 (1968)