On defining functions and cores for unbounded domains I

Mathematische Zeitschrift - Tập 286 - Trang 987-1002 - 2016
Tobias Harz1, Nikolay Shcherbina2, Giuseppe Tomassini3
1The Center for GAIA, Pohang University of Science and Technology, Pohang, Republic of Korea
2Department of Mathematics, University of Wuppertal, Wuppertal, Germany
3Scuola Normale Superiore, Pisa, Italy

Tóm tắt

We show that every strictly pseudoconvex domain $$\Omega $$ with smooth boundary in a complex manifold $${\mathcal {M}}$$ admits a global defining function, i.e., a smooth plurisubharmonic function $$\varphi :U \rightarrow {\mathbb {R}}$$ defined on an open neighbourhood $$U \subset {\mathcal {M}}$$ of $$\overline{\Omega }$$ such that $$\Omega = \{\varphi < 0\}$$ , $$d\varphi \ne 0$$ on $$b\Omega $$ and $$\varphi $$ is strictly plurisubharmonic near $$b\Omega $$ . We then introduce the notion of the core $${\mathfrak {c}}(\Omega )$$ of an arbitrary domain $$\Omega \subset {\mathcal {M}}$$ as the set of all points where every smooth and bounded from above plurisubharmonic function on $$\Omega $$ fails to be strictly plurisubharmonic. If $$\Omega $$ is not relatively compact in $${\mathcal {M}}$$ , then in general $${\mathfrak {c}}(\Omega )$$ is nonempty, even in the case when $${\mathcal {M}}$$ is Stein. It is shown that every strictly pseudoconvex domain $$\Omega \subset {\mathcal {M}}$$ with smooth boundary admits a global defining function that is strictly plurisubharmonic precisely in the complement of $${\mathfrak {c}}(\Omega )$$ . We then investigate properties of the core. In particular, we prove that the core is always 1-pseudoconcave.

Tài liệu tham khảo

Aupetit, B.: Geometry of pseudoconvex open sets and distributions of values of analytic multivalued functions. In: Proceedings of the Conference on “Banach Algebras and Several Complex Variables” in Honor of Charles Rickart, Contemporary Mathematics vol. 32. Yale University, New Haven, pp. 15–34 (June 1983) Čirka, E.M.: Approximation by holomorphic functions on smooth manifolds in \(\mathbb{C}^n\), Math. USSR-Sb. 7, 95–114 (1969). English translation of. Mat. Sb. 78, 101–123 (1969) Colţoiu, M.: Complete locally pluripolar sets. J. Reine Angew. Math. 412, 108–112 (1990) Fornæss, J.E., Stensønes, B.: Lectures on Counterexamples in Several Complex Variables, Mathematical Notes 33. Princeton University Press, Princeton (1987) Forster, O., Ramspott, K.J.: Singularitätenfreie analytische Raumkurven als vollständige Durchschnitte. Bayer. Akad. Wiss. Math.-Natur. Kl. S.-B. 1965 Abt. II, pp. 1–10 (1966) Fritzsche, K., Grauert, H.: From Holomorphic Functions to Complex Manifolds, Graduate Texts in Mathematics, vol. 213. Springer, New York (2002) Globevnik, J.: On Fatou-Bieberbach domains. Math. Z. 229, 91–106 (1998) Grauert, H.: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146, 331–368 (1962) Harvey, F.R., Lawson, H.B.: Geometric plurisubharmonicity and convexity: an introduction. Adv. Math. 230, 2428–2456 (2012) Harvey, F.R., Lawson, H.B.: \(p\)-convexity, \(p\)-plurisubharmonicity and the Levi problem. Indiana Univ. Math. J. 62, 149–169 (2013) Harz, T., Shcherbina, N., Tomassini, G.: Wermer type sets and extension of CR functions. Indiana Univ. Math. J. 61, 431–459 (2012) Henkin, G.M., Leiterer, J.: Theory of Functions on Complex Manifolds, Monographs in Mathtematics 79. Birkhäuser, Basel (1984) Henkin, G.M., Leiterer, J.: Andreotti-Grauert Theory by Integral Formulas, Progress in Mathematics 74. Birkhäuser, Basel (1988) Jarnicki, J., Pflug, P.: Extension of Holomorphic Functions, De Gruyter Expositions in Mathematics 34. Walther de Gruyter, Berlin (2000) Kazama, H.: Note on Stein neighborhoods of \(\mathbb{C}^k \times \mathbb{R}^1\). Math. Rep. Kyushu Univ. 14, 47–55 (1983). Univ. Math. J. 41, 515–532 (1992) Morrow, J., Rossi, H.: Some theorems of algebraicity for complex spaces. J. Math. Soc. Jpn. 27, 167–183 (1975) Riemenschneider, O.: Über den Flächeninhalt analytischer Mengen und die Erzeugung k-pseudokonvexer Gebiete. Invent. Math. 2, 307–331 (1967) Rothstein, W.: Zur Theorie der analytischen Mannigfaltigkeiten im Raume von n komplexen Veränderlichen. Math. Ann. 129, 96–138 (1955) Shcherbina, N.: On fibering into analytic curves of the common boundary of two domains of holomorphy. Math. USSR Izvestiya 21, 399–413 (1982); English translation of Izv. Akad. Nauk SSSR Ser. Mat. 46, 1106–1123 (1983) Shcherbina, N., Tomassini, G.: The Dirichlet problem for Levi-flat graphs over unbounded domains. Int. Math. Res. Not. 1999, 111–151 (1999) Słodkowski, Z.: Local maximum property and \(q\)-plurisubharmonic functions in uniform algebras. J. Math. Anal. Appl. 115, 105–130 (1986) Słodkowski, Z., Tomassini, G.: Minimal kernels of weakly complete spaces. J. Funct. Anal. 210, 125–147 (2004). 18, 143–148 (1968)