On boundary behavior of harmonic functions in Hölder domains

Fausto Ferrari1
1Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40127, Bologna

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ancona, A. (1978). Principe de Harnack à la frontier et theèoremé de Fatou pour un opèratore elliptique dans un domaine Lipschitzien,Ann. Inst. Fourier (Grenoble),28, 169–213.

Athanasopoulos, I. and Caffarelli, L.A. (1985). A theorem of real analysis and its application, to free boundary problems,Comm. Pure. Appl. Math.,38, 499–502.

Athanasopoulos, I., Caffarelli, L.A., and Salsa, S. (1996). Caloric functions in Lipschitz domains and the regularity of solution to phase transition problems,Ann. Math.,143, 413–434.

Athanasopoulos, I., Caffarelli, L.A., and Salsa, S. (1996). Regularity of the free boundary in parabolic phasetransition problems,Acta Math.,176, 245–282.

Bauman, P. (1984). Positive solutions in nondivergence form and their adjoints,Arkiv Mat.,22, 153–173.

Bass, R.F., and Burdzy, K. (1990). A Probabilistic Proof Of The Boundary Harnack Principle, inSeminar on Stochastic Processes, 1989 Cinlar, E., Chung, K.L., and Getor, R.K., Eds., Birkhäuser, Boston, MA, 1–16.

Bass, R.F. and Burdzy, K. (1991). A boundary Harnack principle for twisted Hölder domains,Ann. Math.,134, 253–276.

Bass, R.F. and Burdzy, K. (1992). Lifetimes conditioned diffusions,Probability Theory and Related Fields, Springer-Verlag, 405–443.

Bañuelos, R., Bass, R.F. and Burdzy, K. (1991). Hõlder Domains And The Boundary Harnack Principle,Duke Math. J.,64, 195–200.

Caffarelli, L.A. (1987). A Harnack inequality approach to the regularity of free boundaries, Part I, Lipschitz free boundaries areC 1,α,Revista Math. Iberoamericana,3, 139–162.

Caffarelli, L.A. (1989). A Harnack inequality approach to the regularity of free boundaries, Part II, Flat free boundaries are Lipschitz,CPAM,42, 55–78.

Caffarelli, L., Fabes, E., Mortola, S., and Salsa, S. (1981). Boundary behavior of non-negative solutions of elliptic operators in divergence form,Indiana Math. J.,30, 621–640.

Dahlberg, B.E.J. (1977). Estimates of harmonic measure,Arch. Rat Mech. Anal.,65, 275–288.

Dahlberg, B. and Kenig, C. (1985). Hardy spaces and theL p-Neumann problem for Laplace's equation in a Lipschitz domain.Un. Goteborg report.

Fabes, E., Garofalo, N., Marin-Malave, S., and Salsa, S. (1988). Fatou theorems for some nonlinear elliptic equations,Rev. Mat. lb.,4, 227–242.

Fabes, E., Garofalo, N., and Salsa, S. (1986). A backward Harnack inequality and Fatou theorem for non-negative solutions of parabolic equations,Illinois J. Math.,30, 536–565.

Helms, L.L. (1969).Introduction to Potential Theory, Vol. XXII, Wiley-Interscience, New York.

Hunt, R.A. and Wheeden, R.L. (1968). On the boundary values of harmonic functions,Trans. Amer. Math. Soc.,132, 307–322.

Jerison, D.S. and Kenig, C.E. (1982). Boundary value problems on Lipschitz domains, inStudies in Partial Differential Equations, Littman, W., Ed.,Math. Assoc. Amer., Washington, D.C.

Jerison, D.S. and Kenig, C.E. (1982). Boundary Behavior of Harmonic Functions in Non-tangentially Accessible Domains,Adv. Math.,46, 80–147.

Kenig, C.E. (1994). Harmonic analysis Techniques for Second Order Elliptic Boundary Value Problems,CBMS, (83), A.M.S.

Landkof, N.S. (1972).Foundations of Modern Potential Theory, Springer-Verlag, Berlin.