On a consistent field transfer in non linear inelastic analysis and ultimate load computation

Computational Mechanics - Tập 42 - Trang 213-226 - 2007
Delphine Brancherie1, Pierre Villon1, Adnan Ibrahimbegovic2
1Université de Technologie de Compiègne, Laboratoire Roberval, Compiègne Cedex, France
2École Normale Supérieure de Cachan, Laboratoire de Mécanique et Technologie, Cachan, France

Tóm tắt

In this work we propose a field transfer operator for remeshing carried out in the course of incremental analysis of a non linear inelastic behavior. The proposed procedure is geared towards the ultimate load computation of a complex structure, where we choose the appropriate mesh grading for each different phase of computations, starting with a coarse mesh for the initial linear response and going towards a more refined mesh for highly nonlinear inelastic response. The proposed projection operator is developed on the basis of diffuse approximation method. The key feature of such an operator is to guarantee the conservation of relevant mechanics quantities which ensures a superior performance of the proposed field transfer with respect to the standard remeshing procedure. We present the illustrative results both for an isotropic damage model and standard plasticity model, indicating very satisfying performance.

Tài liệu tham khảo

Brancherie D and Ibrahimbegović A (2004). Modélisation “macro” de phénomènes dissipatifs localisés à l’échelle “micro”: formulation et implantation numérique. Revue Européenne des Éléments Finis, numéro spécial Giens 2003 13(5-6-7): 461–473 Breitkopf P, Rassineux A and Villon P (2002). Diffuse approximation technology: fundamentals and implementation. Revue Européenne des Éléments Finis 11: 825–867 Hughes TJR (1987). The finite element methods. Prentice-Hall, Englewood-Cliffs Ibrahimbegovic A (2006) Non linear mechanics of solids: theoretical formulation and numerical implementation. Herms Science (in French) Ibrahimbegović A and Brancherie D (2003). Combined hardening and softening constitutive model of plasticity: precursor to shear slip line failure. Comput Mech 31: 88–100 Ladevèze P and Pelle J (2004). Mastering calculations in linear and nonlinear mechanics. Springer, Heidelberg Lubliner J (1990). Plasticity theory. MacMillan, New York Maugin GA (1992). The thermodynamics of plasticity and fracture. In: Aref, H and Crighton, D (eds) Cambridge texts in applied mathematics, pp. Cambridge University Press, Cambridge Mazars J (1984) Application de la mécanique de l’endommagment au comportement non linéaire du béton de structure. PhD thesis, Thèse de doctorat de l’université de Paris 6, LMT Nayroles B, Touzot G and Villon P (1992). Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10: 307–318 Perić D, Hochard Ch, Dutko M and Owen DJR (1996). Transfer operators for evolving meshes in small strain elasto-plasticity. CMAME 137: 331–344 Simo JC and Hughes TJR (2000). Computational inelasticity. Springer, Heidelberg Villon P, Borouchaki H and Saanouni K (2002). Transfert de champs plastiquement admissibles. CRAS Mécanique 330: 313–318