On a Generalized Hemivariational Inequality on Banach Spaces

Results in Mathematics - Tập 73 - Trang 1-18 - 2018
Ana-Maria Croicu1, József Kolumbán2
1Kennesaw State University, Kennesaw, USA
2Babes-Bolyai University, Cluj-Napoca, Romania

Tóm tắt

In this paper we prove two existence theorems for a generalized hemivariational inequality involving set-valued mappings of two variables in Banach spaces. In order to prove the results, we make use of the well-known Ky Fan’s Intersection Theorem and Simon’s Minimax Theorem. To illustrate the generality and applicability of the two existence theorems, several applications are provided at the end of the paper.

Tài liệu tham khảo

Aubin, J.P.: Optima and Equilibria. An Introduction to Nonlinear Analysis. Springer, Berlin (1993) Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, London (1984) Brezis, H., Nirenberg, L., Stampacchia, G.: A remark on Ky Fan’s minimax principle. Bollettino U.M.I. 6(4), 293–300 (1972) Chadli, O., Chbani, Z., Riahi, H.: Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities. J. Optim. Theory Appl. 105(2), 299–323 (2000) Costea, N., Lupu, C.: On a class of variational-hemivariational inequalities involving set valued mappings. Adv. Pure Appl. Math 1, 233–246 (2010) Croicu, A.: On a generalized hemivariational inequality on reflexive Banach spaces. Lib. Math. 22, 17–31 (2002) Croicu, A.: On the eigenvalue problem for a generalized hemivariational inequality. Studia Univ. Babes-Bolyai Math. XLVII(1), 25–42 (2002) Fan, K.: A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142, 305–310 (1961) Fichera, G.: Problemi elastostatici con vincoli unilaterali: il problema di signorini con ambigue conditioni al contorno. Mem. Accad. Naz. Lincei 7, 91–140 (1964) Gasinski, L., Papageorgiou, N.: Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Chapman-Hall/CRC, London (2005) Hartman, G.J., Stampacchia, G.: On some nonlinear elliptic differential equations. Acta Math. 115, 271–310 (1966) Kassay, G., Kolumban, J.: Variational inequalities given by semi-pseudomonotone maps. Nonlinear Anal. Forum 5, 35–50 (2000) Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities. Academic Press, New York (1980) Knaster, B., Kuratowski, C., Mazurkiewicz, S.: Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe. Fund. Math. 14, 132–137 (1929) Lions, J.L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–519 (1967) Lisei, H., Molnar, A.E., Varga, C.: On a class of inequality problems with lack of compactness. J. Math. Anal. Appl. 378, 741–748 (2011) Motreanu, D., Panagiotopoulos, P.D.: Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities. Kluwer Academic Press, Dordrecht (1999) Motreanu, D., Rădulescu, V.: Existence results for inequality problems with lack of convexity. Numer. Funct. Anal. Optimiz 21, 869–884 (2000) Motreanu, D., Rădulescu, V.: Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems, vol. Nonconvex Optim. Appl. Kluwer Academic Publishers, Dordrecht (2003) Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York (1995) Panagiotopoulos, P.D.: Nonconvex energy functions: hemivariational inequalities and substationary principles. Acta Mech. 42, 160–183 (1983) Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. Birkhäuser Verlag, Basel (1985) Panagiotopoulos, P.D.: Nonconvex problems of semipermeable media and related topics. Z. Angew. Math. Mech. 65, 29–36 (1985) Panagiotopoulos, P.D.: Hemivariational inequalities and their applications. In: Morerau, J.J., Panagiotopoulos, P.D. (eds.) Topics in Nonsmooth Mechanics. Birkhäuser Verlag, Boston (1988) Panagiotopoulos, P.D.: Semicoercive hemivariational inequalities on the delamination of composite plates. Q. Appl. Math. 47, 611–629 (1989) Panagiotopoulos, P.D.: Hemivariational Inequalities. Applications in Mechanics and Engineering. Springer, Berlin (1993) Panagiotopoulos, P.D., Fundo, M., Rădulescu, V.: Existence theorems of Hartman–Stampacchia type for hemivariational inequalities and applications. J. Glob. Optim. 15, 41–54 (1999) Simons, S.: Minimax and variational inequalities: are they of fixed-point or Hahn-Banach type? In: Moeschlin, O., Pallaschke, D. (eds.) Game Theory and Mathematical Economics. North Holland, Netherlands (1981) Zhang, Y., He, Y.: On stably quasimonotone hemivariational inequalities. Nonlinear Anal. 74, 3324–3332 (2011)