On Symmetric Stable-Type Processes with Degenerate/Singular Lévy Densities

Haruna Okamura1, Toshihiro Uemura2
1Graduate school of Engineering Science, Kansai University, Osaka, Japan
2Department of Mathematics, Faculty of Engineering Science, Kansai University, Osaka, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chen, Z.-Q., Kim, P., Kumagai, T.: Global heat kernel estimates for symmetric jump processes. Trans. Amer. Math. Soc. 363, 5021–5055 (2011)

Chen, Z.-Q., Kumagai, T.: Heat kernel estimates for stable-like processes on $$d$$-sets. Stoch. Proc. Appl. 108, 27–62 (2003)

Chen, Z.-Q., Kumagai, T.: Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Rel. Fields 140, 277–317 (2008)

Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, 2nd rev. and ext. ed., Walter de Gruyter (2011)

Ichihara, K.: Some global properties of symmetric diffusions processes. Publ. RIMS Kyoto Univ. 14, 441–486 (1978)

Janicki, A., Weron, A.: Simulation and Chaotic Behavior of $$\alpha $$- Stable Stochastic Processes. Marcel Dekker, New York (1994)

Pang, M.M.H.: $$L^1$$ and $$L^2$$ properties of a class of singular second order elliptic operators on $${\mathbb{R}}^d$$ with measurable coefficients . J. Diff. Equ. 129, 1–17 (1996)

Sato, K.: Lévy Processes and Infinitely Divisible Distributions, rev edn. Cambridge University Press, Cambridge (2005)

Schilling, R.L., Uemura, T.: On the Feller property of Dirichlet forms generated by pseudo differential operators. Tohoku Math. J. 59, 401–422 (2007)

Shiozawa, Y., Uemura, T.: Explosion of jump-type symmetric Dirichlet forms on $$R^d$$. J. Theor. Probab. 27, 404–432 (2014)

Sturm, K-Th: Analysis on local Dirichlet spaces I. Recurrence, conservativeness and $$L^p$$-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)

Uemura, T.: On some path properties of symmetric stable-like processes for one dimension. Potential Anal. 16, 79–91 (2002)

Uemura, T.: On symmetric stable-like processes: some path properties and generators. J. Theor. Probab. 17, 541–555 (2004)