On Rational Functions Sharing the Measure of Maximal Entropy

Arnold Mathematical Journal - Tập 6 - Trang 387-396 - 2020
F. Pakovich1
1Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Tóm tắt

We show that describing rational functions $$f_1,$$ $$f_2,$$ $$\dots ,f_n$$ sharing the measure of maximal entropy reduces to describing solutions of the functional equation $$A\circ X_1=A\circ X_2=\dots =A\circ X_n$$ in rational functions. We also provide some results about solutions of this equation.

Tài liệu tham khảo

An, T.T.H., Diep, N.T.N.: Genus one factors of curves defined by separated variable polynomials. J. Number Theory 133(8), 2616–2634 (2013) Atela, P.: Sharing a Julia set: the polynomial case, Progress in Holomorphic Dynamics, pp. 102–115. Pitman Res. Notes Math. Ser., vol. 387. Longman, Harlow (1998) Atela, P., Hu, J.: Commuting polynomials and polynomials with same Julia set. Int. J. Bifurc. Chaos Appl. Sci. Eng. 6(12A), 2427–2432 (1996) Avanzi, R., Zannier, U.: Genus one curves defined by separated variable polynomials and a polynomial Pell equation. Acta Arith. 99, 227–256 (2001) Avanzi, R., Zannier, U.: The equation \(f(X)=f(Y)\) in rational functions \(X=X(t), Y=Y(t),\). Composit. Math. 139(3), 263–295 (2003) Baker, I., Eremenko, A.: A problem on Julia sets. Ann. Acad. Sci. Fennicae (series A.I. Math.) 12, 229–236 (1987) Beardon, A.: Symmetries of Julia sets. Bull. Lond. Math. Soc. 22(6), 576–582 (1990) Beardon, A.: Polynomials with identical Julia sets. Complex Var. Theory Appl. 17(3–4), 195–200 (1992) Beardon, A., Ng, T.W.: Parametrizations of algebraic curves. Ann. Acad. Sci. Fenn. Math. 31(2), 541–554 (2006) Bilu, Y., Tichy, R.: The Diophantine equation \(f(x) = g(y)\). Acta Arith. 95(3), 261–288 (2000) Freire, A., Lopes, A., Mañé, R.: An invariant measure for rational maps. Bol. Soc. Brasil. Mat. 14(1), 45–62 (1983) Fried, M.: On a theorem of Ritt and related diophantine problems. J. Reine Angew. Math. 264, 40–55 (1973) Levin, G.: Symmetries on Julia sets. Math. Notes 48(5–6), 1126–1131 (1990) Levin, G., Przytycki, F.: When do two rational functions have the same Julia set? Proc. Am. Math. Soc. 125(7), 2179–2190 (1997) Ljubich, M.: Entropy properties of rational endomorphisms of the Riemann sphere. Ergodic Theory Dyn. Syst. 3(3), 351–385 (1983) Lyubich, M., Minsky, Y.: Laminations in holomorphic dynamics. J. Differ. Geom. 47(1), 17–94 (1997) Ng, T.W., Wang, M.X.: Ritt’s theory on the unit disk. Forum Math. 25(4), 821–851 (2013) Pakovich, F.: On polynomials sharing preimages of compact sets, and related questions. Geom. Funct. Anal. 18(1), 163–183 (2008) Pakovich, F.: Prime and composite Laurent polynomials. Bull. Sci. Math. 133, 693–732 (2009) Pakovich, F.: On the equation P(f)=Q(g), where P, Q are polynomials and f, g are entire functions. Am. J. Math. 132(6), 1591–1607 (2010) Pakovich, F.: On rational functions whose normalization has genus zero or one. Acta. Arith. 182(1), 73–100 (2018a) Pakovich, F.: On algebraic curves A(x)-B(y)=0 of genus zero. Math. Z. 288(1), 299–310 (2018b) Pakovich, F.: Semiconjugate rational functions: a dynamical approach. Arnold Math. J. 4(1), 59–68 (2018c) Pakovich, F.: Recomposing rational functions. Int. Math. Res. Not. 7, 1921–1935 (2019a) Pakovich, F.: Commuting rational functions revisited. Ergod. Theory Dyn. Syst. (2019b). https://doi.org/10.1017/etds.2019.51 Ritt, J.: Prime and composite polynomials. Am. M. S. Trans. 23, 51–66 (1922) Ritt, J.: Permutable rational functions. Trans. Am. Math. Soc. 25, 399–448 (1923) Ritt, J.: Equivalent rational substitutions. Trans. Am. Math. Soc. 26(2), 221–229 (1924) Schmidt, W., Steinmetz, N.: The polynomials associated with a Julia set. Bull. Lond. Math. Soc. 27(3), 239–241 (1995) Ye, H.: Rational functions with identical measure of maximal entropy. Adv. Math. 268, 373–395 (2015)