On Perturbed Isometries Between the Positive Cones of Certain Continuous Function Spaces

Results in Mathematics - Tập 78 - Trang 1-15 - 2023
Longfa Sun1, Yinghua Sun1, Shenghua Wang1
1Hebei Key Laboratory of Physics and Energy Technology, School of Mathematics and Physics, North China Electric Power University, Baoding, China

Tóm tắt

Let X, Y be two compact Hausdorff perfectly normal spaces (in particular, compact metrizable spaces), C(X) be the real Banach space of all continuous functions on X, and $$C_+(X)$$ be the positive cone of C(X). In this paper, we show that if there exists a $$\delta $$ -surjective $$\varepsilon $$ -isometry $$F: C_+(X)\rightarrow C_+(Y)$$ , then X and Y are homeomorphic. Moreover, we show that there exists a unique additive surjective isometry $$V:C_+(X)\rightarrow C_+(Y)$$ (the restriction of a linear surjective isometry $$U:C(X)\rightarrow C(Y)$$ induced by the homeomorphism) such that $$\begin{aligned} \Vert F(f)-V(f)\Vert \le 2\varepsilon ,\quad \textrm{for}\; \textrm{all}\;\;f\in C_+(X). \end{aligned}$$ This can be regarded as a localized generalization of the Banach–Stone theorem for compact Hausdorff perfectly normal spaces.

Tài liệu tham khảo

Alestalo, P., Trotsenko, D.A., Väisälä, J.: Isometric approximation. Isr. J. Math. 125, 61–82 (2001) Banach, S.: Théorie des Opérations Lineaires, Reprinted. Clelsea Publishing Company, New York (1963) Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis I. Amer. Math. Soc. Colloquium Publications, Vol. 48. Amer. Math. Soc., Providence (2000) Cheng, L., Cheng, Q., Tu, K., Zhang, J.: A universal theorem for stability of \(\varepsilon \)-isometries on Banach spaces. J. Funct. Anal. 269(1), 199–214 (2015) Cheng, L., Dong, Y., Zhang, W.: On stability of nonsurjective \(\varepsilon \)-isometries of Banach spaces. J. Funct. Anal. 264(3), 713–734 (2013) Cheng, L., Shen, Q., Zhang, W., Zhou, Y.: More on stability of almost surjective \(\varepsilon \)-isometries of Banach spaces. Sci. China Math. 60(2), 277–284 (2017) Dilworth, S.J.: Approximate isometries on finite-dimensional normed spaces. Bull. Lond. Math. Soc. 31, 471–476 (1999) Dugundji, J.: Topology. Allyn and Bacon, Boston (1966) Galego, E.M., da Silva, A.L.P.: An optimal nonlinear extension of Banach–Stone theorem. J. Funct. Anal. 271, 2166–2176 (2016) Garrido, M.I., Jaramillo, J.A.: Variations on the Banach–Stone theorem. Extracta Math. 17, 351–383 (2002) Hyers, D.H., Ulam, S.M.: On approximate isometries. Bull. Am. Math. Soc. 51, 288–292 (1945) Mazur, S., Ulam, S.: Sur les transformations isométriques d’espaces vectoriels normés. C. R. Acad. Sci. Paris 194, 946–948 (1932) Omladič, M., Šemrl, P.: On non linear perturbations of isometries. Math. Ann. 303, 617–628 (1995) Phelps, R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics, vol. 1364, 2nd edn. Springer, Berlin (1993) Šemrl, P., Väisälä, J.: Nonsurjective nearisometries of Banach spaces. J. Funct. Anal. 198, 268–278 (2003) Stone, M.H.: Applications of the theory of boolean rings to general topology. Trans. Am. Math. Soc. 41, 375–481 (1937) Sun, L.: Hyers–Ulam stability of \(\varepsilon \)-isometries between the positive cones of \(L^p\)-spaces. J. Math. Anal. Appl. (2020). https://doi.org/10.1016/j.jmaa.2020.124014 Sun, L.: A note on stability of non-surjective \(\varepsilon \)-isometries between the positive cones of \(L^p\)-spaces. Indian J. Pure Appl. Math. (2021). https://doi.org/10.1007/s13226-021-00047-2 Väisälä, J.: Isometric approximation property in Euclidean spaces. Isr. J. Math. 128, 1–27 (2002) Väisälä, J.: Isometric approximation property of unbounded sets. Result Math. 43, 359–372 (2003) Vestfrid, I.A.: \(\varepsilon \)-isometries in Euclidean spaces. Nonlinear Anal. 63, 1191–1198 (2005) Vestfrid, I.A.: \(\varepsilon \)-isometries in \(\ell _\infty ^n\). Nonlinear Funct. Anal. Appl. 12, 433–438 (2007) Vestfrid, I.A.: Near-isometries on unit sphere. Ukr. Math. J. 72, 663–670 (2020) Zhou, Y., Zhang, Z., Liu, C.: On linear isometries and \(\varepsilon \)-isometries between Banach spaces. J. Math. Anal. App. 435, 754–764 (2016) Zhou, Y., Zhang, Z., Liu, C.: On representation of isometric embeddings between Hausdorff metric spaces of compact convex subsets. Houston J. Math. 44, 917–925 (2018)