On Global Solvability and Uniform Stability of One Nonlinear Integral Equation

Sergey Buterin1, M. A. Malyugina1
1Saratov State University, Saratov, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Buterin, S.A.: The inverse problem of recovering the Volterra convolution operator from the incomplete spectrum of its rank-one perturbation. Inverse Probl. 22, 2223–2236 (2006)

Buterin, S.A.: Inverse spectral reconstruction problem for the convolution operator perturbed by a one-dimensional operator. Matem. Zametki 80 (2006) no. 5, 668–682 (Russian); English transl. in Math. Notes 80 no. 5, 631–644 (2006)

Buterin, S.A.: On an inverse spectral problem for a convolution integro-differential operator. Res. Math. 50(3–4), 73–181 (2007)

Buterin, S.A.: On the reconstruction of a convolution perturbation of the Sturm–Liouville operator from the spectrum, Differ. Uravn. 46: 146–149 (Russian). English transl. in Differ. Eqs. 46(2010), 150–154 (2010)

Buterin, S.A., Choque Rivero, A.E.: On inverse problem for a convolution integro-differential operator with Robin boundary conditions. Appl. Math. Lett. 48, 150–155 (2015)

Bondarenko, N., Buterin, S.: On recovering the Dirac operator with an integral delay from the spectrum. Res. Math. 71(3), 1521–1529 (2017)

Bondarenko, N.P.: Inverse problem for the Dirac system with an integral delay of the convolution-type. In: Matematika. Mekhanika, vol. 19, Saratov Univ., Saratov, pp. 9–12 (2017)

Bondarenko, N., Buterin, S.: An inverse spectral problem for integro-differential Dirac operators with general convolution kernels. Appl. Anal. (2018). https://doi.org/10.1080/00036811.2018.1508653

Bondarenko, N.P.: An inverse problem for the integro-differential Dirac system with partial information given on the convolution kernel. J. Inverse Ill-Posed Probl. (2018). https://doi.org/10.1515/jiip-2017-0058

Bondarenko, N.P.: An inverse problem for an integro-differential operator on a star-shaped graph. Math. Methods Appl. Sci. 41(4), 1697–1702 (2018)

Ignatyev, M.: On an inverse spectral problem for the convolution integro-differential operator of fractional order. Results Math. (2018). https://doi.org/10.1007/s00025-018-0800-2

Ignatiev, M.: On an inverse spectral problem for one integro-differential operator of fractional order. J. Inverse Ill-posed Probl. (2018). https://doi.org/10.1515/jiip-2017-0121

Buterin, S.A.: Inverse spectral problem for Sturm–Liouville integro-differential operators with discontinuity conditions. J. Math. Sci. (To appear)

Tricomi, F.G.: Integral Equations. Interscience Publishers, New York (1957)