On Eigenmeasures Under Fourier Transform

Springer Science and Business Media LLC - Tập 29 - Trang 1-33 - 2023
Michael Baake1, Timo Spindeler1, Nicolae Strungaru2
1Fakultät für Mathematik, Universität Bielefeld, Bielefeld, Germany
2Department of Mathematical Sciences, MacEwan University, Edmonton, Canada

Tóm tắt

Several classes of tempered measures are characterised that are eigenmeasures of the Fourier transform, the latter viewed as a linear operator on (generally unbounded) Radon measures on $$\mathbb {R}\hspace{0.5pt}^d$$ . In particular, we classify all periodic eigenmeasures on $$\mathbb {R}\hspace{0.5pt}$$ , which gives an interesting connection with the discrete Fourier transform and its eigenvectors, as well as all eigenmeasures on $$\mathbb {R}\hspace{0.5pt}$$ with uniformly discrete support. An interesting subclass of the latter emerges from the classic cut and project method for aperiodic Meyer sets. Finally, we construct a large class of eigenmeasures with locally finite support that is not uniformly discrete and has large gaps around 0.

Tài liệu tham khảo

Argabright, L.N., Gil de Lamadrid, J.: Fourier Analysis of Unbounded Measures on Locally Compact Abelian Groups, Memoirs Amer. Math. Soc., no. 145, AMS, Providence, RI (1974) Baake, M., Grimm, U.: Aperiodic Order. Vol. 1: A Mathematical Invitation. Cambridge University Press, Cambridge (2013) Baake, M., Grimm, U., (eds.): Aperiodic Order. Vol. 2: Crystallography and Almost Periodicity. Cambridge University Press, Cambridge (2017) Baake, M., Lenz, D.: Dynamical systems on translation bounded measures: pure point dynamical and diffraction spectra. Erg. Theory Dyn. Syst. 24, 1867–1893 (2004). arXiv:math.DS/0302061 Baake, M., Moody, R.V.: Weighted Dirac combs with pure point diffraction. J. Reine Angew. Math. (Crelle) 573, 61–94 (2004). arXiv:math.MG/0203030 Baake, M., Strungaru, N.: A note on tempered measures. Coll. Math. 172, 15–30 (2023); arXiv:2202.09175 Baake, M., Strungaru, N., Terauds, V.: Pure point measures with sparse support and sparse Fourier–Bohr support. Trans. Lond. Math. Soc. 7, 1–32 (2020). arXiv:1908.00579 Berg, C., Forst, G.: Potential Theory on Locally Compact Abelian Groups. Springer, Berlin (1975) Chihara, H., Furuya, T., Koshikawa, T.: Hermite expansions of some tempered distributions. J. Pseudo-Differ. Oper. Appl. 9, 105–124 (2018) Córdoba, A.: Dirac combs. Lett. Math. Phys. 17, 191–196 (1989) Cowley, J.M.: Diffraction Physics, 3rd edn. North-Holland, Amsterdam (1995) Deng, X., Moody, R.V.: Dworkin’s argument revisited: point processes, dynamics, diffraction, and correlations. J. Geom. Phys. 58, 506–541 (2008). arXiv:0712.3287 Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Clarendon Press, Oxford (1958) Dym, H., McKean, H.P.: Fourier Series and Integrals. Academic Press, San Diego, CA (1972) Feichtinger, H.G.: Un espace de Banach de distributions tempérées sur les groupes localement compacts abéliens. C. R. Acad. Sci. Paris Sér. A-B 290, 791–794 (1980) Feichtinger, H.G.: On a new Segal algebra. Monatsh. Math. 92, 269–289 (1981) Feichtinger, H.G., Luef, F.: Wiener amalgam spaces for the fundamental identity of Gabor analysis. Collect. Math. 57, 233–253 (2006). arXiv:math/0503364 Grünbaum, F.A.: The eigenvectors of the discrete Fourier transform: a version of the Hermite functions. J. Math. Anal. Appl. 88, 355–363 (1982) Guinand, A.P.: Concordance and the harmonic analysis of sequences. Acta Math. 101, 235–271 (1959) Hof, A.: On diffraction by aperiodic structures. Commun. Math. Phys. 169, 25–43 (1995) Janssen, A.E.J.M.: The Zak transform: a signal transform for sampled time-continuous signals. Philips J. Res. 43, 23–69 (1988) Kabanava, M.: Tempered Radon measures. Rev. Mat. Complut. 21, 553–564 (2008) Katznelson, Y.: An Introduction to Harmonic Analysis, 3rd edn. Cambridge University Press, Cambridge (2004) Kolountzakis, M.H.: Fourier pairs of discrete support with little structure. J. Fourier Anal. Appl. 22, 1–5 (2016). arXiv:1502.06283 Lagarias, J.C.: Mathematical quasicrystals and the problem of diffraction. In: Baake, M., Moody, R.V. (eds.) Directions in Mathematical Quasicrystals. CRM Monograph Series, vol. 13, pp. 61–93. Amer. Math. Society, Providence, RI (2000) Lee, J.-Y., Lenz, D., Richard, C., Sing, B., Strungaru, N.: Modulated crystals and almost periodic measures. Lett. Math. Phys. 110, 3435–3472 (2020). arXiv:1907.07017 Lenz, D., Richard, C.: Pure point diffraction and cut and project schemes for measures: the smooth case. Math. Z. 256, 347–378 (2007). arXiv:math.DS/0603453 Lenz, D., Spindeler, T., Strungaru, N.: Pure point diffraction and mean, Besicovitch and Weyl almost periodicity, preprint (2020). arXiv:2006.10821 Lenz, D., Strungaru, N.: On weakly almost periodic measures. Trans. Am. Math. Soc. 371, 6843–6881 (2019). arXiv:1609.08219 Lev, N., Olevskii, A.: Quasicrystals and Poisson’s summation formula. Invent. Math. 200, 585–606 (2015). arXiv:1312.6884 Lev, N., Olevskii, A.: Quasicrystals with discrete support and spectrum. Rev. Mat. Iberoamer. 32, 1341–1352 (2016). arXiv:1501.00085 Lev, N., Olevskii, A.: Fourier quasicrystals and discreteness of the diffraction spectrum. Adv. Math. 315, 1–26 (2017). arXiv:1512.08735 Meyer, Y.: Algebraic Numbers and Harmonic Analysis. North Holland, Amsterdam (1972) Meyer, Y.F.: Measures with locally finite support and spectrum. Proc. Nat. Acad. Sci. (PNAS) 113, 3152–3158 (2016) Meyer, Y.F.: Measures with locally finite support and spectrum. Rev. Mat. Iberoam. 33, 1025–1036 (2017) Moody, R.V.: Meyer sets and their duals. In: Moody, R.V. (ed.) The Mathematics of Long-Range Aperiodic Order. NATO ASI Ser. C, vol. 489, pp. 403–441. Kluwer, Dordrecht (1997) Moody, R.V.: Model sets: a survey. In: Axel, F., Dénoyer, F., Gazeau, J.P. (eds.) From Quasicrystals to More Complex Systems, pp. 145–166. EDP Sciences, Les Ulis, and Springer, Berlin (2000). arXiv:math/0002020 Moody, R.V., Strungaru, N.: Almost periodic measures and their Fourier transforms. In: Baake, M., Grimm, U. (eds.) Aperiodic Order, vol. 2: Crystallography and Almost Periodicity, pp. 173–270. Cambridge University Press, Cambridge (2017) Reiter, H., Stegeman, J.: Classical Harmonic Analysis and Locally Compact Groups. Clarendon Press, Oxford (2000) Richard, C.: Dense Dirac combs in Euclidean space with pure point diffraction. J. Math. Phys. 44, 4436–4449 (2003). arXiv:math-ph/0302049 Richard, C., Strungaru, N.: Pure point diffraction and Poisson summation. Ann. H. Poincaré 18, 3903–3931 (2017). arXiv:1512.00912 Rudin, W.: Fourier Analysis on Groups. Wiley, New York (1962) Schwartz, L.: Théorie des Distributions. Hermann, Paris (1966) Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984) Simon, B.: Distributions and their Hermite expansions. J. Math. Phys. 12, 140–148 (1971) Spindeler, T., Strungaru, N.: On the (dis)continuity of the Fourier transform of measures. J. Math. Anal. Appl. 499(125062), 1–36 (2021). arXiv:2002.01544 Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971) Strungaru, N.: On weighted Dirac combs supported inside model sets. J. Phys. A 47(335202), 1–19 (2014). arXiv:1309.7947 Strungaru, N.: Almost periodic pure point measures. In: Baake, M., Grimm, U. (eds.) Aperiodic Order, vol. 2: Crystallography and Almost Periodicity, pp. 271–342. Cambridge University Press, Cambridge (2017). arXiv:1501.00945 Strungaru, N.: On the Fourier transformability of strongly almost periodic measures. Can. J. Math. 72, 900–927 (2020). arXiv:1704.04778 Strungaru, N.: On the Fourier analysis of measures with Meyer set support. J. Funct. Anal. 278, 108404:1–30 (2020). arXiv:1807.03815 Strungaru, N., Terauds, V.: Diffraction theory and almost periodic distributions. J. Stat. Phys. 164, 1183–1216 (2016). arXiv:1603.04796 Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals, 2nd edn. Clarendon Press, Oxford (1967) Wiener, N.: The Fourier Integral and Certain of its Applications. Dover, New York (1958)