On Conservation Laws for the Toda Equations

Acta Applicandae Mathematicae - Tập 83 - Trang 175-182 - 2004
Arthemy V. Kiselev1
1Department of Mathematics, Vorob'evy Gory, Russia

Tóm tắt

A description of the two-dimensional Toda equations' Noether symmetries, assigned to conservation laws for the latter equations, is given. A continuum of recursion operators, both local and nonlocal, is obtained for the Toda equations' symmetry algebras.

Tài liệu tham khảo

Barnich, G., Brandt, F. and Henneaux, M.: Local BRST cohomology in the antifield formalism: I. General theorems, Comm. Math. Phys. 174(1995), 57–92. Bocharov, A. V., Chetverikov, V. N., Duzhin, S. V. et al.: Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Amer. Math. Soc., Providence, RI, 1999. Edited and with a preface by I. Krasil'shchik and A. Vinogradov. Drinfel'd, V. G. and Sokolov, V. V.: Lie algebras and equations of Korteweg-de Vries type, J. Soviet Math. 30(1985), 1975-2005. Kaliappan, P. and Lakshmanan, M.: Connection between the infinite sequence of Lie-Bäcklund symmetries of the Korteweg-de Vries and sine-Gordon equations.J. Math. Phys. 23(3) (1982), 456–459. Krasil'shchik, I. S. and Kersten, P. H. M.: Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations, Kluwer Acad. Publ., Dordrecht, 2000. Leznov, A. N. and Saveliev, M. V.: Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems, Birkhäuser, Basel, 1992. Leznov, A. N., Smirnov, V. G. and Shabat, A. B.: Internal symmetry group and integrability conditions for two-dimensional dynamical systems, Teoret. Mat. Fiz. 51(1) (1982), 10–21. Meshkov, A. G.: Symmetries of scalar fields. III. Two-dimensional integrable models, Teoret. Mat. Fiz. 63(3) (1985), 323–332. Razumov, A. V. and Saveliev, M. V.: Lie Algebras, Geometry, and Toda-type Systems, Cambridge Lecture Notes in Phys. 8, Cambridge Univ. Press, 1997. Sakovich, S. Yu.: On conservation laws and zero-curvature representations of the Liouville equation, J. Phys. A: Math. Gen. 27(1994), L125–L129. Shabat, A. B.: Higher symmetries of two-dimensional lattices, Phys. Lett. A 200(1995), 121–133. Shabat, A. B. and Yamilov, R. I.: Exponential systems of the first type and the Cartan matrices, Preprint, Bashkir Division AN SSSR, Ufa, 1981.