On-Chip Gel-Valve Using Photoprocessable Thermoresponsive Gel

Springer Science and Business Media LLC - Tập 1 - Trang 1-8 - 2014
Keitaro Ito1, Shinya Sakuma2, Yoshiyuki Yokoyama3, Fumihito Arai1
1Nagoya University, Nagoya, Japan
2Osaka University, Osaka, Japan
3Toyama Industrial Technology Center, Toyama, Japan

Tóm tắt

Microfluidic chips are powerful tools for biochemical experiments. High speed and precise flow control can be achieved by using microvalves on a chip. Several types of microvalves that can be integrated into a microfluidic chip have been reported. Among them, gel microvalves have certain advantages over other valves because of their soft structure, which will contribute to prevent mechanical damage the cells passing though the valve. Here we use Bioresist, a photoprocessable thermoresponsive gel, as a key component of the microvalve. Since Bioresist is photopatternable, we can create any arbitrary 2D shape from the thermoresponsive gel using photolithography. Moreover, Bioresist has the unique feature of a phase transition around 30°C, and swells and shrinks repeatedly with temperature change. By integrating the patterned thermoresponsive gel with a microheater, we developed a gel actuator and designed a gel-valve. The gel-valve has the advantages of a simple actuation mechanism: high leakage pressure, high speed actuation and low power consumption. The valve is biocompatible and easily integrated into a chip by using conventional photolithography. Using this valve, we achieved on-chip flow control, and applied it to cell sorting on a chip.

Tài liệu tham khảo

Wacogne B, Pieralli C, Roux C, Gharbi T: Measuring the mechanical behaviour of human oocytes with a very simple SU-8 micro-tool. Biomed Microdevices 2008, 10: 411–419. 10.1007/s10544-007-9150-7 Zare RN, Kim S: Microfluidic platforms for single-cell analysis. Annu Rev Biomed Eng 2010, 12: 187–201. 10.1146/annurev-bioeng-070909-105238 Lindström S, Andersson-Svahn H: Miniaturization of biological assays – overview on microwell devices for single-cell analyses. Biochim Biophys Acta 2011, 1810: 308–316. 10.1016/j.bbagen.2010.04.009 Hagiwara M, Kawahara T, Yamanishi Y, Masuda T, Feng L, Arai F: On-chip magnetically actuated robot with ultrasonic vibration for single cell manipulations. Lab Chip 2011, 11: 2049–2054. 10.1039/c1lc20164f Sakuma S, Arai F: Cellular force measurement using a nanometric-probe-integrated microfluidic chip with a displacement reduction mechanism. J Robot Mechatronics 2013, 25: 277–284. Wheeler AR, Throndset WR, Whelan RJ, Leach AM, Zare RN, Liao YH, Farrell K, Manger ID, Daridon A: Microfluidic device for single-cell analysis. Anal Chem 2003, 75: 3581–3586. 10.1021/ac0340758 Li PC, Harrison DJ: Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Anal Chem 1997, 69: 1564–1568. 10.1021/ac9606564 Yamada M, Seki M: Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 2005, 5: 1233–1239. 10.1039/b509386d Han J, Yeom J, Mensing G, Flachsbart B, Shannon MA: Characteristics of electrostatic gas micro-pump with integrated polyimide passive valves. J Micromechanics Microengineering 2012, 22: 095007. 10.1088/0960-1317/22/9/095007 Yıldırım E, Arıkan MS, Külah H: A normally closed electrostatic parylene microvalve for micro total analysis systems. Sensors Actuators A Phys 2012, 181: 81–86. 10.1016/j.sna.2012.05.008 Anjewierden D, Liddiard GA, Gale BK: An electrostatic microvalve for pneumatic control of microfluidic systems. J Micromechanics Microengineering 2012, 22: 025019. 10.1088/0960-1317/22/2/025019 Hosokawa K, Maeda R: A pneumatically-actuated three-way microvalve fabricated with polydimethylsiloxane using the membrane transfer technique. J Micromechanics Microengineering 2000, 10: 415–420. 10.1088/0960-1317/10/3/317 Go JS, Shoji S: A disposable, dead volume-free and leak-free in-plane PDMS microvalve. Sensors Actuators A Phys 2004, 114: 438–444. 10.1016/j.sna.2003.12.028 Thuillier G, Malek CK: Development of a low cost hybrid Si/PDMS multi-layered pneumatic microvalve. Microsyst Technol 2005, 12: 180–185. 10.1007/s00542-005-0007-9 Bosch D, Heunhofer B, Muck G, Seldel H, Thumser U, Welser W: A silicon microvalve with combined electromagnetic /electrostatic actuation. Sensors Actuators A Phys 1993, 38: 684–692. 10.1016/0924-4247(93)80116-X Meckes A, Behrens J, Kayser O, Benecke W, Becker TH, Müller G: Microfluidic system for the integration and cyclic operation of gas sensors. Sensors Actuators A Phys 1999, 76: 478–483. 10.1016/S0924-4247(99)00060-6 Bae B, Kim N, Kee H, Kim SH, Lee Y, Lee S, Park K: Feasibility test of an electromagnetically driven valve actuator for glaucoma treatment. J Microelectromechanical Syst 2002, 11: 344–354. 10.1109/JMEMS.2002.800921 Fu C, Rummler Z, Schomburg W: Magnetically driven micro ball valves fabricated by multilayer adhesive film bonding. J Micromechanics Microengineering 2003, 13: 96–102. 10.1088/0960-1317/13/4/316 Stoeber B, Yang Z, Liepmann D, Muller SJ: Flow control in microdevices using thermally responsive triblock copolymers. J Microelectromech Syst 2005, 14: 207–213. 10.1109/JMEMS.2004.839330 Yamanishi Y, Teramoto J, Magariyama Y, Ishihama A, Fukuda T, Fumihito A: On-chip cell immobilization and monitoring system using thermosensitive gel controlled by suspended polymeric microbridge. IEEE Trans Nanobioscience 2009, 8: 312–317. 10.1109/TNB.2009.2035273 Arai F, Ichikawa A, Fukuda T, Katsuragi T: Isolation and extraction of target microbes using thermal sol–gel transformation. Analyst 2003, 128: 547. 10.1039/b212919a Ichikawa A, Arai F, Yoshikawa K, Uchida T, Fukuda T: In situ formation of a gel microbead for indirect laser micromanipulation of microorganisms. Appl Phys Lett 2005, 87: 191108. 10.1063/1.2126800 Arai F, Ng C, Maruyama H, Ichikawa A, El-Shimy H, Fukuda T: On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel. Lab Chip 2005, 5: 1399–1403. 10.1039/b502546j Arakawa T, Shirasaki Y, Aoki T, Funatsu T, Shoji S: Three-dimensional sheath flow sorting microsystem using thermosensitive hydrogel. Sensors Actuators A Phys 2007, 135: 99–105. 10.1016/j.sna.2006.06.074 Shirasaki Y, Tanaka J, Makazu H, Tashiro K, Shoji S, Tsukita S, Funatsu T: On-chip cell sorting system using laser-induced heating of a thermoreversible gelation polymer to control flow. Anal Chem 2006, 78: 695–701. 10.1021/ac0511041 Yokoyama Y, Umezaki M, Kishimura T, Tamiya E, Takamura Y: Micro-and nano-fabrication of stimulus-responsive polymer using nanoimprint lithography. J Photopolymer Sci Technol 2011, 24: 63–70. 10.2494/photopolymer.24.63 Tanaka T, Sato E, Hirokawa Y: Critical kinetics of volume phase transition of gels. Phys Rev Lett 1985, 55: 2455–2458. 10.1103/PhysRevLett.55.2455 Zhang J, Peppas NA: Synthesis and characterization of pH- and temperature-sensitive poly (methacrylic acid)/poly (N -isopropylacrylamide) interpenetrating polymeric networks. Macromolecules 2000, 33: 102–107. 10.1021/ma991398q