Oligomerization of glycerol – a critical review

European Journal of Lipid Science and Technology - Tập 113 Số 1 - Trang 100-117 - 2011
Andreas Martin1, M. Richter1
1Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Rostock, Germany

Tóm tắt

Abstract

The oligomerization of glycerol to preferentially di‐ and triglycerol is reviewed, with primary focus on the use of heterogeneous acidic and basic catalysts. Low molecular‐weight oligomers have found a wide field of applications in cosmetics, food industry and polymer production. The growing market intensified research work on the selective catalytic oligomerization of glycerol. Performing the reaction of glycerol in the presence of microporous and mesoporous solid catalysts aims at exerting shape‐selective effects on the reaction, suppressing the abundant formation of cyclic isomers and cutting further polymerization of the target products. Enhanced selectivity to diglycerol is observed over some type of catalysts, but the solids suffer from leaching of active alkaline cations from the solid, severe deterioration of crystallinity of zeolites and even dissolution of the solids in the hot glycerol during batch reaction at temperatures in the range of 240–260°C. In those cases it is difficult to separate homogeneous and heterogenous reaction routes, and the shape‐selective effects are levelled off. The oligomerization is a consecutive reaction, and complete conversion of glycerol favours formation of high molecular‐weight glycerol oligo‐ and polymers. To achieve maximum yield of diglycerol, the reaction has to be interrupted at glycerol conversions of ca. 50%. Alternative reaction engineering is required to overcome the inherent disadvantages of a batch reaction. Examples will be given for a selective glycerol oligomerization under reduced pressure in a so‐called fall‐film reactor using super‐acidic polymers as catalysts.

Từ khóa


Tài liệu tham khảo

Neumann W. H. C., 1991, Glycerin(e) and its history, 7

Jungermann E., 1991, Glycerine: A Key Cosmetic Ingredient

Pagliaro M., 2008, The Future of Glycerol. New Usages for a Versatile Raw Material

10.1016/S0734-9750(01)00060-X

Steinberger U., 1989, Ullmann's Encyclopedia of Industrial Chemistry, 477

Kanzler W. German patent 102008007622 (2008).

10.1016/j.cattod.2007.11.029

Miner C. S., 1953, Glycerol

10.1002/anie.200604694

10.1021/cr068216s

10.1002/ejlt.200800061

10.1002/cssc.200800069

10.1002/ejlt.200900091

10.1016/S0167-2991(98)80257-7

10.1016/S0926-860X(01)00920-6

10.1016/S0167-2991(00)80711-9

10.1002/chem.200701757

10.1016/j.catcom.2008.04.007

10.1002/lipi.19860880309

10.1002/food.19840280812

http://www.solvaychemicals.com

Plasman V., 2004, Polyglycerols. Versatile ingredients for personal care, 94

10.1002/cite.200800051

10.1016/S0920-5861(02)00062-7

10.1590/S0103-50532009000900015

10.1021/ma990090w

10.1002/macp.1995.021960616

10.1002/(SICI)1521-3773(19991203)38:23<3552::AID-ANIE3552>3.0.CO;2-G

10.1021/ar900158p

10.1051/ocl.2003.0074

10.1021/ja01203a027

10.1021/ja01176a019

10.1007/BF02672963

Deutsch J. Eckelt R. Richter M. Sauer heterogen‐katalysierte Synthese und Ketalisierung von Diglycerinen.41. Jahrestreffen Deutscher Katalytiker 2008 Congress Centrum Neue Weimarhalle Weimar Germany Book of Abstracts 2008 p.266–267.

10.1016/j.jcat.2006.11.006

10.1021/ja00899a032

10.1002/cssc.200800128

Seiden P. Martin J. B. US patent 3 968 169 (1976).

Koter R. Ceglowska K. Polish patent 137 052 (1986).

Barrault J. Clacens J. M. Pouilloux Y. French patent WO 01/98243 (2001).

10.1016/S0167-2991(08)63599-5

10.1201/9780203911167

10.1002/9783527630295

10.1023/A:1015367708955

Eshuis J. I. Laan J. A. Potman R. P. US patent 5 635 588 (1997).

Cottin K., 1998, Préparation de diglydérol et triglycérol par polymérisation directe du glycérol en présence de catalyseurs solides, Oleagineux, Corps, Gras, Lipides should be corrected to Oléagineux, Corps Gras, Lipides, 5, 407

10.1021/jp9106348

Kraft A. EU patent 1 316 577 (2002).

Eckelt R. Krisnandi Y. Martin A. Richter M. German patent 102007042381.2 (2007).

Donald J. C. William F. G. US Patent 3 282 875 (1964).

Waller F. J., 1987, Catalysis with Nafion, ChemTechn., 17, 438

http://www.dupont.com/fuelcells/products/nafion.html.

http://www.fumatech.de.

10.1002/chem.200900487

Ruppert A. M., 2008, CaO materials as active catalysts for glycerol etherification, Prepr. Symp. ‐ Am. Chem. Soc., Div. Fuel Chem., 53, 481

Hees U. Bunte R. Hachgenei J. W. Kuhm P. Harris E. G. World patent 93/25511 (1993).

10.1039/a606766b

10.1038/nature06552

Krisnandi Y. K. Chechinski M. Eckelt R. Martin A. Richter M. Application of Cs ion exchanged zeolite catalysts for glycerol etherification 20. Deutsche Zeolithtagung Halle 5.‐7.3.2008 Book of Abstracts pp 34–35 Hrsg: DECHEMA e. V. Frankfurt am Main (Germany) 2008.

10.1016/S0927-6513(97)00053-9

Barrault J., 2005, Polyglycerols and their esters as an additional use for glycerol, Lipid Technol., 17, 131

Zajic J. Polyglycerol IV. Kinetics of the polymerisation of glycerol. Sborník vysoké ŝkoly chemicko‐technologické v praze E 9 1966 91–101

10.1023/B:TOCA.0000013548.16699.1c