Oligomerization of glycerol – a critical review
Tóm tắt
The oligomerization of glycerol to preferentially di‐ and triglycerol is reviewed, with primary focus on the use of heterogeneous acidic and basic catalysts. Low molecular‐weight oligomers have found a wide field of applications in cosmetics, food industry and polymer production. The growing market intensified research work on the selective catalytic oligomerization of glycerol. Performing the reaction of glycerol in the presence of microporous and mesoporous solid catalysts aims at exerting shape‐selective effects on the reaction, suppressing the abundant formation of cyclic isomers and cutting further polymerization of the target products. Enhanced selectivity to diglycerol is observed over some type of catalysts, but the solids suffer from leaching of active alkaline cations from the solid, severe deterioration of crystallinity of zeolites and even dissolution of the solids in the hot glycerol during batch reaction at temperatures in the range of 240–260°C. In those cases it is difficult to separate homogeneous and heterogenous reaction routes, and the shape‐selective effects are levelled off. The oligomerization is a consecutive reaction, and complete conversion of glycerol favours formation of high molecular‐weight glycerol oligo‐ and polymers. To achieve maximum yield of diglycerol, the reaction has to be interrupted at glycerol conversions of
Từ khóa
Tài liệu tham khảo
Neumann W. H. C., 1991, Glycerin(e) and its history, 7
Jungermann E., 1991, Glycerine: A Key Cosmetic Ingredient
Pagliaro M., 2008, The Future of Glycerol. New Usages for a Versatile Raw Material
Steinberger U., 1989, Ullmann's Encyclopedia of Industrial Chemistry, 477
Kanzler W. German patent 102008007622 (2008).
Miner C. S., 1953, Glycerol
http://www.solvaychemicals.com
Plasman V., 2004, Polyglycerols. Versatile ingredients for personal care, 94
Deutsch J. Eckelt R. Richter M. Sauer heterogen‐katalysierte Synthese und Ketalisierung von Diglycerinen.41. Jahrestreffen Deutscher Katalytiker 2008 Congress Centrum Neue Weimarhalle Weimar Germany Book of Abstracts 2008 p.266–267.
Seiden P. Martin J. B. US patent 3 968 169 (1976).
Koter R. Ceglowska K. Polish patent 137 052 (1986).
Barrault J. Clacens J. M. Pouilloux Y. French patent WO 01/98243 (2001).
Eshuis J. I. Laan J. A. Potman R. P. US patent 5 635 588 (1997).
Cottin K., 1998, Préparation de diglydérol et triglycérol par polymérisation directe du glycérol en présence de catalyseurs solides, Oleagineux, Corps, Gras, Lipides should be corrected to Oléagineux, Corps Gras, Lipides, 5, 407
Eckelt R. Krisnandi Y. Martin A. Richter M. German patent 102007042381.2 (2007).
Waller F. J., 1987, Catalysis with Nafion, ChemTechn., 17, 438
http://www.dupont.com/fuelcells/products/nafion.html.
http://www.fumatech.de.
Ruppert A. M., 2008, CaO materials as active catalysts for glycerol etherification, Prepr. Symp. ‐ Am. Chem. Soc., Div. Fuel Chem., 53, 481
Hees U. Bunte R. Hachgenei J. W. Kuhm P. Harris E. G. World patent 93/25511 (1993).
Krisnandi Y. K. Chechinski M. Eckelt R. Martin A. Richter M. Application of Cs ion exchanged zeolite catalysts for glycerol etherification 20. Deutsche Zeolithtagung Halle 5.‐7.3.2008 Book of Abstracts pp 34–35 Hrsg: DECHEMA e. V. Frankfurt am Main (Germany) 2008.
Barrault J., 2005, Polyglycerols and their esters as an additional use for glycerol, Lipid Technol., 17, 131
Zajic J. Polyglycerol IV. Kinetics of the polymerisation of glycerol. Sborník vysoké ŝkoly chemicko‐technologické v praze E 9 1966 91–101